(a) Work out the Clebsch-Gordan coefficients for the case s1=1/2,s2=anything. Hint: You're looking for the coefficients A and Bin

|sm=A|1212|s2(m-12)+B|12(-12)|s2(m+12)

such that|sm is an eigenstate of . Use the method of Equations 4.179 through 4.182. If you can't figure out whatSx(2) (for instance) does to|s2m2 , refer back to Equation 4.136 and the line before Equation 4.147. Answer:

;role="math" localid="1658209512756" A=s2+12±m2s2+1;B=±s2+12±m2s2+1

where, the signs are determined bys=s2±1/2 .

(b) Check this general result against three or four entries in Table 4.8.

Short Answer

Expert verified

(a) The Clebsch-Gordan coefficients are, A=s2+12±m2s2+1, and B=±s2+12±m2s2+1

(b) The result is checked for few entries.

Step by step solution

01

Introduction to few formulae

Before solving the problem, some formulae should be known,

S±|sm=s(s+1)-m(m±1)|sm±1

Here, S±is the raising and lowering operators with an eigenstate|s

S2|sm=2s(s+1)|sm

Here,S2is the spin angular momentum operator squared with an eigenvalue2s(s+1)and an eigenstate|sm.

localid="1658209816175" Sz|sm=m|sm

Here,Szis the quantized z -component of spin angular momentum with an eigenvaluemand an eigenstae|sm.

s is the spin quantum number which is always a positive integer while m is the magnetic spin quantum number which has always a half-integer value.

A chemical bond is an atom-to-atom attraction. This attraction can be explained by differences in the behaviour of atoms' outermost or valence electrons.

02

(a) Determination of the Clebsch-Gordan coefficients for the case s1=1/2,s2= anything.

Solve the issue by creating the following relationship between the spin angular momentum operator's x -component, Sx , the spin angular momentum operator's y -component, Sy , and the spin raising and lowering operators,S± ,

Sx=12S++S-Sxsm>=12S+sm>+S-sm>=h2ss+1-mm+1sm+1>ss+1-mm-1sm-1>Sy=12iS++S-Sysm>=12S+sm>+S-sm>=h2iss+1-mm+1sm+1>ss+1-mm-1sm-1>

Add angular momenta.

S=S1+S2S2=S1+S2.S1+S2=S12+S22+2S1.S2=S12+S22+2Sx1Sx2+Sy1Sy2+Sz1Sz2=S2sm>=S12+S22+2Sx1Sx2+Sy1Sy2+Sz1Sz2sm>=S12+S22+2Sx1Sx2+Sy1Sy2+Sz1Sz2A1212>s2m-12>+B1212>s2m+12>

Distribute the operators over the states.

S2sm>=AS121212>s2m-12>+BS1212-12>s2m+12>+A1212>S22s2m-12>+B12-12>S22s2m+12>+2ASx1212>Sxs2m-12>+BSx12-12>Sxs2m+12>+ASy1212>Sys2m-12>+BSy12-12>Sys2m+12>+ASz1212>Szs2m-12>+BSz12-12>Szs2m+12>=AS121212>s2m-12>+12-12>S22s2m+12>+2Sx1212>Sxs2m-12>+Sy1212>Sys2m-12>+Sz1212>Szs2m-12>+BAS121212>s2m-12>+12-12>S22s2m+12>+2Sx1212>Sxs2m-12>+Sy1212>Sys2m-12>+Sz1212>Szs2m-12>uncaught exception: Invalid chunk

in file: /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 68
#0 /var/www/html/integration/lib/php/Boot.class.php(769): com_wiris_plugin_impl_HttpImpl_1(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Invalid chunk') #1 /var/www/html/integration/lib/haxe/Http.class.php(532): _hx_lambda->execute('Invalid chunk') #2 /var/www/html/integration/lib/php/Boot.class.php(769): haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Invalid chunk') #3 /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(30): _hx_lambda->execute('Invalid chunk') #4 /var/www/html/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Invalid chunk') #5 /var/www/html/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), Object(sys_net_Socket), NULL) #6 /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(43): haxe_Http->request(true) #7 /var/www/html/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(268): com_wiris_plugin_impl_HttpImpl->request(true) #8 /var/www/html/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(307): com_wiris_plugin_impl_RenderImpl->showImage('9f895d4bd17c841...', NULL, Object(PhpParamsProvider)) #9 /var/www/html/integration/createimage.php(17): com_wiris_plugin_impl_RenderImpl->createImage('" width="0" height="0" role="math">uncaught exception: Invalid chunk

in file: /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 68
#0 /var/www/html/integration/lib/php/Boot.class.php(769): com_wiris_plugin_impl_HttpImpl_1(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Invalid chunk') #1 /var/www/html/integration/lib/haxe/Http.class.php(532): _hx_lambda->execute('Invalid chunk') #2 /var/www/html/integration/lib/php/Boot.class.php(769): haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Invalid chunk') #3 /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(30): _hx_lambda->execute('Invalid chunk') #4 /var/www/html/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Invalid chunk') #5 /var/www/html/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), Object(sys_net_Socket), NULL) #6 /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(43): haxe_Http->request(true) #7 /var/www/html/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(268): com_wiris_plugin_impl_HttpImpl->request(true) #8 /var/www/html/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(307): com_wiris_plugin_impl_RenderImpl->showImage('9f895d4bd17c841...', NULL, Object(PhpParamsProvider)) #9 /var/www/html/integration/createimage.php(17): com_wiris_plugin_impl_RenderImpl->createImage('" width="0" height="0" role="math">S2sm>=AS121212>s2m-12>+BS1212-12>s2m+12>+A1212>S22s2m-12>+B12-12>S22s2m+12>+2ASx1212>Sxs2m-12>+BSx12-12>Sxs2m+12>+ASy1212>Sys2m-12>+BSy12-12>Sys2m+12>+ASz1212>Szs2m-12>+BSz12-12>Szs2m+12>=AS121212>s2m-12>+12-12>S22s2m+12>+2Sx1212>Sxs2m-12>+Sy1212>Sys2m-12>+Sz1212>Szs2m-12>+BAS121212>s2m-12>+12-12>S22s2m+12>+2Sx1212>Sxs2m-12>+Sy1212>Sys2m-12>+Sz1212>Szs2m-12>S2sm>=AS121212>s2m-12>+BS1212-12>s2m+12>+A1212>S22s2m-12>+B12-12>S22s2m+12>+2ASx1212>Sxs2m-12>+BSx12-12>Sxs2m+12>+ASy1212>Sys2m-12>+BSy12-12>Sys2m+12>+ASz1212>Szs2m-12>+BSz12-12>Szs2m+12>=AS121212>s2m-12>+12-12>S22s2m+12>+2Sx1212>Sxs2m-12>+Sy1212>Sys2m-12>+Sz1212>Szs2m-12>+BAS121212>s2m-12>+12-12>S22s2m+12>+2Sx1212>Sxs2m-12>+Sy1212>Sys2m-12>+Sz1212>Szs2m-12>uncaught exception: Invalid chunk

in file: /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 68
#0 /var/www/html/integration/lib/php/Boot.class.php(769): com_wiris_plugin_impl_HttpImpl_1(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Invalid chunk') #1 /var/www/html/integration/lib/haxe/Http.class.php(532): _hx_lambda->execute('Invalid chunk') #2 /var/www/html/integration/lib/php/Boot.class.php(769): haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Invalid chunk') #3 /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(30): _hx_lambda->execute('Invalid chunk') #4 /var/www/html/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Invalid chunk') #5 /var/www/html/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), Object(sys_net_Socket), NULL) #6 /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(43): haxe_Http->request(true) #7 /var/www/html/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(268): com_wiris_plugin_impl_HttpImpl->request(true) #8 /var/www/html/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(307): com_wiris_plugin_impl_RenderImpl->showImage('9f895d4bd17c841...', NULL, Object(PhpParamsProvider)) #9 /var/www/html/integration/createimage.php(17): com_wiris_plugin_impl_RenderImpl->createImage('" width="0" height="0" role="math">S2sm>=AS121212>s2m-12>+BS1212-12>s2m+12>+A1212>S22s2m-12>+B12-12>S22s2m+12>+2ASx1212>Sxs2m-12>+BSx12-12>Sxs2m+12>+ASy1212>Sys2m-12>+BSy12-12>Sys2m+12>+ASz1212>Szs2m-12>+BSz12-12>Szs2m+12>

=AS121212>s2m-12>+12-12>S22s2m+12>+2Sx1212>Sxs2m-12>+Sy1212>Sys2m-12>+Sz1212>Szs2m-12>+BAS121212>s2m-12>+12-12>S22s2m+12>+2Sx1212>Sxs2m-12>+Sy1212>Sys2m-12>+Sz1212>Szs2m-12>

Act with the operators on the states in the above expression.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Construct the matrixSrrepresenting the component of spin angular momentum along an arbitrary directionr. Use spherical coordinates, for which

rsinθcosΦı+sinθsinΦø+cosθk [4.154]

Find the eigenvalues and (normalized) eigen spinors ofSr. Answer:

x+(r)=(cosθ/2esinθ/2); x+(r)=(esin(θ/2)-cos(θ/2)) [4.155]

Note: You're always free to multiply by an arbitrary phase factor-say,eiϕ-so your answer may not look exactly the same as mine.

Use separation of variables in Cartesian coordinates to solve infinite cubical well

V(x,y,z)=0if x,y,z are all between 0 to a;

V(x,y,z)=Otherwise

a) Find the stationary states and the corresponding energies

b) Call the distinct energies E1,E2,E3,..in the order of increasing energy. Findlocalid="1658127758806" E1,E2,E3,E4,E5,E6determine their degeneracies (that is, the number of different states that share the same energy). Comment: In one dimension degenerate bound states do not occur but in three dimensions they are very common.

c) What is the degeneracy of E14 and why is this case interesting?

Work out the radial wave functions R30,R31,andR32using the recursion formula. Don’t bother to normalize them.

An electron is in the spin state

χ=A3i4

(a) Determine the normalization constant .

(b) Find the expectation values of Sx,Sy , and Sz.

(c) Find the "uncertainties" ,σSx , σSyandσSz . (Note: These sigmas are standard deviations, not Pauli matrices!)

(d) Confirm that your results are consistent with all three uncertainty principles (Equation 4.100 and its cyclic permutations - only with in place ofL, of course).

(a) Find the eigenvalues and eigenspinors of Sy .

(b) If you measured Syon a particle in the general state X(Equation 4.139), what values might you get, and what is the probability of each? Check that the probabilities add up to 1 . Note: a and b need not be real!

(c) If you measuredSy2 , what values might you get, and with what probabilities?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free