Derive Equations 2.167 and 2.168.Use Equations 2.165 and 2.166 to solve C and D in terms of F:

C=(sin(la)+iklcos(la))eikaF;D=(cos(la)iklsin(la))eikaF

Plug these back into Equations 2.163 and 2.164. Obtain the transmission coefficient and confirm the equation 2.169

Short Answer

Expert verified

The transmission coefficient equation is,T=11+sin2(2a2m(EV0)h2)(V024E(E+V0))

Step by step solution

01

 Define the Schrodinger equation

A differential equation describes matter in quantum mechanics in terms of the wave-like properties of particles in a field. Its answer is related to a particle's probability density in space and time.

02

Determine the Schrodinger equation

Csin(la)+Dcos(la)=Feika …(i)

l(Ccos(la)Dsin(la))=ikFeika

Ccos(la)Dsin(la)=iklFeika …(ii)

k=2mEh2 l=2m(E=V0)h2

Csin2(la)+Dcos(la)sin(la)=Feikasin(la)Multiply both sides sin(la)

Ccos2(la)Dcos(la)sin(la)=iklFeikacos(la)Multiply both sides cos(la)

Add the above 2 equations

C=Fsin(la)+iklcos(la)eika …(iii)

Now equation (i) multiply withwe get an equation (ii) multiply with sin(la)

Csin(la)cos(la)+Dcos2(la)=Fsin(la)eika

Ccos2(la)Dcos(la)sin(la)=iklFeika

03

Find the Schrodinger equation

Now add the above equation

D=Fcos(la)iklsin(la)eika …(iv)

Substitute equations (iii) and (iv)

Aeika+Beika=Csin(la)+Dcos(la)

Put values of Cand D

Aeika+Beika=F(sin(la)+iklcos(la))eika(sin(la))+F(cos(la)iklsin(la))eikacos(la)

Aeika+Beika=Fcos(2la)iklsin(2la)eika …(v)

ik[AeikaBeika]=lCcos(la)iklsin(la)

ik[AeikaBeika]=likF(sin(la)+iklcos(la))eika(cos(la))+F(cos(la)iklsin(la))eikasin(la))]

role="math" localid="1656056140172" ikAeikaBeika=Fcos(2la)ilksin(2la)eika …(vi)

2Beika=Fcos(2la)iklsin(2la)eikaFcos(2la)ilksin(2la)eika

2Beika=iFl2k2lksin(2la)eika

B=iFl2k22lksin(2la)

04

Solve the terms C and D

2Aeika=F2cos(2la)lkl+lksin(2la)eika

F=Ae2ikacos(2la)+ik2+l22klsin(2la)

FA=e2ikacos(2la)+ik2+l22klsin(2la)

T=FA2

role="math" localid="1656056446552" T=e2ikacos(2la)+ik2+l22klsin(2la)2

T=e2ikacos(2la)+ik2+l22klsin(2la)e2ikacos(2la)ik2+l22klsin(2la)

By putting cos2(2la)=1sin2(2la)

T=11+sin2(2la)(k2l2)24k2l2

T=11+sin22a2m(EV0)h2V024E(E+V0)

Where

l=2m(EV0)h2,k=2mEh2

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free