Derive Equations 2.167 and 2.168.Use Equations 2.165 and 2.166 to solve C and D in terms of F:

C=(sin(la)+iklcos(la))eikaF;D=(cos(la)iklsin(la))eikaF

Plug these back into Equations 2.163 and 2.164. Obtain the transmission coefficient and confirm the equation 2.169

Short Answer

Expert verified

The transmission coefficient equation is,T=11+sin2(2a2m(EV0)h2)(V024E(E+V0))

Step by step solution

01

 Define the Schrodinger equation

A differential equation describes matter in quantum mechanics in terms of the wave-like properties of particles in a field. Its answer is related to a particle's probability density in space and time.

02

Determine the Schrodinger equation

Csin(la)+Dcos(la)=Feika …(i)

l(Ccos(la)Dsin(la))=ikFeika

Ccos(la)Dsin(la)=iklFeika …(ii)

k=2mEh2 l=2m(E=V0)h2

Csin2(la)+Dcos(la)sin(la)=Feikasin(la)Multiply both sides sin(la)

Ccos2(la)Dcos(la)sin(la)=iklFeikacos(la)Multiply both sides cos(la)

Add the above 2 equations

C=Fsin(la)+iklcos(la)eika …(iii)

Now equation (i) multiply withwe get an equation (ii) multiply with sin(la)

Csin(la)cos(la)+Dcos2(la)=Fsin(la)eika

Ccos2(la)Dcos(la)sin(la)=iklFeika

03

Find the Schrodinger equation

Now add the above equation

D=Fcos(la)iklsin(la)eika …(iv)

Substitute equations (iii) and (iv)

Aeika+Beika=Csin(la)+Dcos(la)

Put values of Cand D

Aeika+Beika=F(sin(la)+iklcos(la))eika(sin(la))+F(cos(la)iklsin(la))eikacos(la)

Aeika+Beika=Fcos(2la)iklsin(2la)eika …(v)

ik[AeikaBeika]=lCcos(la)iklsin(la)

ik[AeikaBeika]=likF(sin(la)+iklcos(la))eika(cos(la))+F(cos(la)iklsin(la))eikasin(la))]

role="math" localid="1656056140172" ikAeikaBeika=Fcos(2la)ilksin(2la)eika …(vi)

2Beika=Fcos(2la)iklsin(2la)eikaFcos(2la)ilksin(2la)eika

2Beika=iFl2k2lksin(2la)eika

B=iFl2k22lksin(2la)

04

Solve the terms C and D

2Aeika=F2cos(2la)lkl+lksin(2la)eika

F=Ae2ikacos(2la)+ik2+l22klsin(2la)

FA=e2ikacos(2la)+ik2+l22klsin(2la)

T=FA2

role="math" localid="1656056446552" T=e2ikacos(2la)+ik2+l22klsin(2la)2

T=e2ikacos(2la)+ik2+l22klsin(2la)e2ikacos(2la)ik2+l22klsin(2la)

By putting cos2(2la)=1sin2(2la)

T=11+sin2(2la)(k2l2)24k2l2

T=11+sin22a2m(EV0)h2V024E(E+V0)

Where

l=2m(EV0)h2,k=2mEh2

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Show that [Aeikx+Be-ikx] and [Ccos(kx)+Dsin(kx)] are equivalent ways of writing the same function of x, and determine the constants C and D in terms of Aand B, and vice versa.

Delta functions live under integral signs, and two expressions (D1xandD2x)involving delta functions are said to be equal if

-+f(x)D1(x)dx=-+f(x)D2(x)dxfor every (ordinary) function f(x).

(a) Show that

δ(cx)=1|c|δ(x)(2.145)

where c is a real constant. (Be sure to check the case where c is negative.)

(b) Let θ(x) be the step function:

θ(x){1,x>00,x>0(2.146).

(In the rare case where it actually matters, we define θ(0) to be 1/2.) Show that dθldx=δ

In Problem 2.21 you analyzed the stationary gaussian free particle wave packet. Now solve the same problem for the traveling gaussian wave packet, starting with the initial wave function.ψ(x,0)=Ae-ax2eilx

A particle of mass m in the harmonic oscillator potential (Equation 2.44) starts ψ(x,0)=A(1-2mωħx)2e-mω2ħx2out in the state for some constant A.
(a) What is the expectation value of the energy?
(c) At a later time T the wave function islocalid="1658123604154" ψ(x,T)=B(1+2mωħx)2e-mω2ħx2
for some constant B. What is the smallest possible value of T ?

A particle in the infinite square well has as its initial wave function an even mixture of the first two stationary states:

Ψ(x,0)=A[ψ1(x)+ψ2(x)]

You can look up the series

116+136+156+=π6960

and

114+134+154+=π496

in math tables. under "Sums of Reciprocal Powers" or "Riemann Zeta Function."

(a) Normalize Ψ(x,0). (That is, find A. This is very easy, if you exploit the orthonormality of ψ1 and ψ2. Recall that, having ψnormalized at , t=0 , you can rest assured that is stays normalized—if you doubt this, check it explicitly after doing part(b).

(b) FindΨ(x,t) and|Ψ(x,t)|2 . Express the latter as a sinusoidal function of time. To simplify the result, letωπ22ma2

(c)Compute x . Notice that it oscillates in time. What is the angular frequency of the oscillation? What is the amplitude of the oscillation?(If your amplitude is greater than a2, go directly to jail.

(d) Compute p.

(e) If you measured the energy of this particle, what values might you get, and what is the probability of getting each of them? Find the expectation value ofH . How does it compare with E1 and E2

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free