Chapter 2: Q33P (page 83) URL copied to clipboard! Now share some education! Determine the transmission coefficient for a rectangular barrier (same as Equation 2.145, only with V(x)=+V0>0 in the region−a<x<a ). Treat separately the three casesE<V0,E=V0 , andE>V0 (note that the wave function inside the barrier is different in the three cases). Short Answer Expert verified T−1=1+V024E(V0−E)sinh22ah2m(V0−E) x≤−aT−1=1+2mEa2h2 −a<x<aT−1=1+V024E(V0−E)sin22ah2m(V0−E) x≥−a Step by step solution 01 Define the Schrödinger equation A differential equation describes matter in quantum mechanics in terms of the wave-like properties of particles in a field. Its answer is related to a particle's probability density in space and time. 02 Determine the transmission coefficient V(x)=0 When localid="1656057126624" x≤−aV(x)=−V0 When −a<x<aV(x)=0 When x≥−aSchrodinger equation−h22md2dx2Ψ(x)+V(x)Ψ(x)=EΨ(x)We shall split into 3 regionsΨ(x)=Aeikx+Be−ikx x<−aΨ(x)=Feikxx>aAe−ika+Beika=Ce−μa+Deμaik(Ae−ika−Beika)=μ(Ce−μa−Deμa)We haveCeμa+Deμa=FeikaikFeika=μ(Ce−μa−Deμa)B=e−2ika(k2+μ2)sinh(2μa)2ikμcosh(2μa)+(k2−μ2)sinh(2μa)AC=e−aμ−ika(−k2+kμi)2ikμcosh(2μa)+(k2−μ2)sinh(2μa)AD=e−aμ−ika(−k2+kμi)2ikμcosh(2μa)+(k2−μ2)sinh(2μa)AF=2e−2ikakμi2ikμcosh(2μa)+(k2−μ2)sinh(2μa)AT=FA2T=2e−2ikakμi2ikμcosh(2μa)+(k2−μ2)sinh(2μa)2T=4μ2k2(μ4+2μ2k2+k4)[sinh2(2μa)+4μ2k2cosh2(2μa)]Putcosh2(2μa)=1+sinh2(2μa)T=1(μ2+k2)2sinh2(2μa)/4μ2k2+1T−1=1+(μ2+k2)sinh2(2μa)4μ2k2 03 Plot the graph and value of constants Put the value of constantμandkwe get,T−1=1+V024E(V0−E)sinh22ah2m(V0−E)When energy is equal to the potential but the barrier region we haveΨn=0Ψ(x)=Cx+DAe−ika+Beika=−Ca+Dik(Ae−ika−Beika)=CAt, x=aCa+D=FeikaC=ikFeikaB=kae−2ikaka+iAC=ke−ika−ka−iAD=e−ikaAF=e−2ika1−ikaAT=FA2T=11+2mEa2h2T−1=1+2mEa2h2−h22md2dx2Ψ(x)+V(x)Ψ(x)=EΨ(x)−h22mΨn=(E−V0)ΨΨn=−2m(E−V0)h2Ψn=−λ2Ψλ=2m(E−V0)h2Ae−ika+Beika=Ce−iλa+Deiλaik(Ae−ika−Beika)=iλ(Ce−iλa−Deiλa)We haveCeiλa+De−iλa=FeikaikFeika=iλ(Ce−iλa−Deiλa)B=e−2ika(k2−λ2)sin(2λa)2kλcos(2λa)+(k2+λ2)sin(2λa)AC=e−ia(λ+k)(λ+K)K2kλcos(2λa)−i(k2+λ2)sin(2λa)AD=e−ia(k−λ)(k−λ)K−2kλcos(2λa)+i(k2+λ2)sin(2λa)AF=2kλe−2ika2kλcos(2λa)−i(k2+λ2)sin(2λa)AT=FA2=2kλe−2ika2kλcos(2λa)−i(k2+λ2)sin(2λa)2T=4λ2k2(λ4−2λ2k2+k4)sin2(2λa)+4λ2k2T=11+(λ2−k2)sin2(2λa)/4λ2k2T−1=1+(λ2−k2)sin2(2λa)4λ2k2T−1=1+V024E(V0−E)sin22ah2m(V0−E) Unlock Step-by-Step Solutions & Ace Your Exams! Full Textbook Solutions Get detailed explanations and key concepts Unlimited Al creation Al flashcards, explanations, exams and more... Ads-free access To over 500 millions flashcards Money-back guarantee We refund you if you fail your exam. Start your free trial Over 30 million students worldwide already upgrade their learning with Vaia!