Obtain the field (41.5), (41.6) of a uniformly moving charge \(q\left[=\left(4
\pi \varepsilon_{0}\right)^{-1} Q\right]\) by the following alternative method:
Assume that the field in the rest frame \(S^{\prime}\) of the charge is given by
$$
\mathbf{e}^{\prime}=\left(Q / r^{\prime 3}\right)\left(x^{\prime}, y^{\prime},
z^{\prime}\right), \quad \mathbf{b}^{\prime}=0, \quad r^{\prime 2}=x^{\prime
2}+y^{\prime 2}+z^{\prime 2}
$$
then transform this field to the usual second frame \(\mathrm{S}\) at \(t=0\).
[Hint: obtain \(\mathbf{b}=\mathbf{u} \times \mathbf{e} / c^{2}\) from \((39.2)\);
from the inverse of \((39.1)\) obtain \(\mathbf{e}=\left(Q \gamma /
r^{3}\right)(x, y, z) ;\) finally use (41.7). ]