A finite stressed body with angular momentum \(h\) is subject to external
surface forces which constitute a couple \(\mathbf{m}\). By use of the three-
dimensional Gauss divergence theorem, convert the volume integral for
\(\mathrm{dh} / \mathrm{d} t\) into an integral of the stresses \(t^{i j}\) over
the surface of the body, and recognize this as \(\mathbf{m}\). [Hint: fili in
the details of the following proof, where equation numbers indicate results
used.
$$ $$
\begin{aligned}
&=\int\left[\cdots+t^{32}-t^{23}\right] \mathrm{d} V \\
&=\int\left[\left(x_{2} t^{3 j}\right)_{, j}-\left(x_{3} t^{2 j}\right)_{,
j}\right] \mathrm{d} V \\
&=\oint\left(x_{2} t^{3 j} n_{j}-x_{3} t^{2 f} n_{j}\right) \mathrm{d} S=m_{1}
\end{aligned}
$$
and similarly for \(m_{2}\) and \(\left.m_{3} \cdot\right]\)
\mathrm{d} h_{1} / \mathrm{d} t=\int\left[x_{2} t^{3 j}, j-x_{3} t^{2 j},
j+u_{2} g_{3}-u_{3} g_{2}\right] \mathrm{d} V
$$