The density of totally crystalline nylon 6,6 at room temperature is \(1.213
\mathrm{g} / \mathrm{cm}^{3} .\) Also, at room temperature the unit cell for
this material is triclinic with lattice parameters
$$\begin{array}{ll}
a=0.497 \mathrm{nm} & \alpha=48.4^{\circ} \\
b=0.547 \mathrm{nm} & \beta=76.6^{\circ} \\
c=1.729 \mathrm{nm} & \gamma=62.5^{\circ}
\end{array}$$
If the volume of a triclinic unit cell, \(V_{\mathrm{tri}}\), is a function of
these lattice parameters as
$$\begin{aligned}
&V_{\mathrm{tri}}=a b c \sqrt{1-\cos ^{2} \alpha-\cos ^{2} \beta-\cos ^{2}
\gamma+}\\\
&2 \cos \alpha \cos \beta \cos \gamma
\end{aligned}$$
determine the number of repeat units per unit cell.