Molecular weight data for some polymer are tabulated here. Compute (a) the number average molecular weight, and (b) the weight-average molecular weight. (c) If it is known that this material's degree of polymerization is \(477,\) which one of the polymers listed in Table 14.3 is this polymer? Why? $$\begin{array}{ccc} \hline \text {Molecular Weight} & & \\ \text {Range }(\mathrm{g} / \mathrm{mol}) & \boldsymbol{x}_{\boldsymbol{i}} & \boldsymbol{w}_{\boldsymbol{i}} \\ \hline 8,000-20,000 & 0.05 & 0.02 \\ 20,000-32,000 & 0.15 & 0.08 \\ 32,000-44,000 & 0.21 & 0.17 \\ 44,000-56,000 & 0.28 & 0.29 \\ 56,000-68,000 & 0.18 & 0.23 \\ 68,000-80,000 & 0.10 & 0.16 \\ 80,000-92,000 & 0.03 & 0.05 \\ \hline \end{array}$$

Short Answer

Expert verified
Calculate the number average molecular weight from the given mole fractions and molecular weight ranges: $$\overline{M}_{n}=(0.05 \times 14,000)+(0.15 \times 26,000)+(0.21 \times 38,000)+(0.28 \times 50,000)+(0.18 \times 62,000)+(0.10 \times 74,000)+(0.03 \times 86,000)$$ $$\overline{M}_{n}=47,520$$ Calculate the weight average molecular weight using the given weight fractions: $$\overline{M}_{w}=\frac{(0.02 \times 14,000)+(0.08 \times 26,000)+(0.17 \times 38,000)+(0.29 \times 50,000)+(0.23 \times 62,000)+(0.16 \times 74,000)+(0.05 \times 86,000)}{(0.02+0.08+0.17+0.29+0.23+0.16+0.05)}$$ $$\overline{M}_{w}=54,230$$ Compute the molecular weight of the monomer using the degree of polymerization value of 477: $$\text{DP} = \frac{\overline{\mathrm{M}}_{\mathrm{n}}}{M_{\text{monomer}}}$$ $$M_{\text{monomer}} = \frac{\overline{\mathrm{M}}_{\mathrm{n}}}{\text{DP}}$$ $$M_{\text{monomer}} = \frac{47,520}{477}$$ $$M_{\text{monomer}} \approx 99.6$$ Compare the molecular weight of the monomer (99.6) to the polymers listed in Table 14.3 to identify the polymer. The polymer with a monomer molecular weight closest to 99.6 is poly(ethylene oxide).

Step by step solution

01

Compute the Number Average Molecular Weight

To calculate the number average molecular weight (\(\overline{\mathrm{M}}_{\mathrm{n}}\)), we will use the following formula: $$\overline{\mathrm{M}}_{\mathrm{n}}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}$$ where \(x_i\) are the mole fractions, \(M_i\) are the molecular weights of the different ranges, and n is the number of molecular weight ranges. We can determine \(M_i\) using the mid-point of each molecular weight range. Calculate \(M_i\) for each range: $$M_1 = \frac{(8000+20000)}{2} = 14,000$$ $$M_2 = \frac{(20000+32000)}{2} = 26,000$$ $$M_3 = \frac{(32000+44000)}{2} = 38,000$$ $$M_4 = \frac{(44000+56000)}{2} = 50,000$$ $$M_5 = \frac{(56000+68000)}{2} = 62,000$$ $$M_6 = \frac{(68000+80000)}{2} = 74,000$$ $$M_7 = \frac{(80000+92000)}{2} = 86,000$$ Now, compute \(\overline{M}_{n}\): $$\overline{M}_{n}=(0.05 \times 14,000)+(0.15 \times 26,000)+(0.21 \times 38,000)+(0.28 \times 50,000)+(0.18 \times 62,000)+(0.10 \times 74,000)+(0.03 \times 86,000)$$
02

Compute the Weight Average Molecular Weight

To calculate the weight average molecular weight (\(\overline{\mathrm{M}}_{\mathrm{w}}\)), we will use the following formula: $$\overline{\mathrm{M}}_{\mathrm{w}}=\frac{\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{w}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}}{\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{w}_{\mathrm{i}}}$$ where \(w_i\) are the weight fractions and \(M_i\) are the molecular weights of the different ranges. Now, compute \(\overline{M}_{w}\): $$\overline{M}_{w}=\frac{(0.02 \times 14,000)+(0.08 \times 26,000)+(0.17 \times 38,000)+(0.29 \times 50,000)+(0.23 \times 62,000)+(0.16 \times 74,000)+(0.05 \times 86,000)}{(0.02+0.08+0.17+0.29+0.23+0.16+0.05)}$$
03

Determine the Polymer

With the degree of polymerization (\(\text{DP}\)) as 477, we can compute the molecular weight of the monomer (\(M_{\text{monomer}}\)) using the following equation: $$\text{DP} = \frac{\overline{\mathrm{M}}_{\mathrm{n}}}{M_{\text{monomer}}}$$ After evaluating \(\overline{\mathrm{M}}_{\mathrm{n}}\) from step 1, we can identify the polymer from Table 14.3 by comparing the molecular weight of the monomer.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free