Give the electron configurations for the following ions: \(\mathrm{P}^{5+}, \mathrm{P}^{3-}, \mathrm{Sn}^{4+}, \mathrm{Se}^{2-}, \mathrm{I}^{-}\), and \(\mathrm{Ni}^{2+}\)

Short Answer

Expert verified
Question: Write the electron configurations for the following ions: P^(5+), P^(3-), Sn^(4+), Se^(2-), I^(-), and Ni^(2+). Answer: The electron configurations for the given ions are: P^(5+): \(1s^2\ 2s^2\ 2p^6\ 3s^2\) P^(3-): \(1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\) Sn^(4+): \(1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 4s^2\ 3d^{10}\ 4p^6\ 5s^2\ 4d^{10}\) Se^(2-): \(1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 4s^2\ 3d^{10}\ 4p^6\) I^(-): \(1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 4s^2\ 3d^{10}\ 4p^6\ 5s^2\ 4d^{10}\ 5p^6\) Ni^(2+): \(1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 3d^8\)

Step by step solution

01

Determine the atomic numbers of the given elements

To begin, we need to find the atomic numbers of each given element, which indicates the number of protons and electrons in their neutral state. The respective atomic numbers are: P: 15 Sn: 50 Se: 34 I: 53 Ni: 28
02

Write the neutral electron configurations

Next, we need to write the electron configurations for the neutral atoms. The electron configuration shows the distribution of electrons in the various orbitals/sub-shells around the nucleus: P: \(1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^3\) Sn: \(1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 4s^2\ 3d^{10}\ 4p^6\ 5s^2\ 4d^{10}\ 5p^2\) Se: \(1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 4s^2\ 3d^{10}\ 4p^4\) I: \(1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 4s^2\ 3d^{10}\ 4p^6\ 5s^2\ 4d^{10}\ 5p^5\) Ni: \(1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 4s^2\ 3d^8\)
03

Apply the ion charges to the electron configurations

Now, we'll adjust the electron configurations based on the charges of the ions. A positive charge means that the ion has lost electrons, while a negative charge means that the ion has gained electrons. With this in mind, we'll adjust the electron configurations as follows: P\(^{5+}\): remove 5 electrons from the neutral P configuration => \(1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^3 \rightarrow 1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^{\cancelto{0}{3}}\) P\(^{3-}\): add 3 electrons to the neutral P configuration => \(1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^3 \rightarrow 1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^{6}\) Sn\(^{4+}\): remove 4 electrons from the neutral Sn configuration => \(1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 4s^2\ 3d^{10}\ 4p^6\ 5s^2\ 4d^{10}\ 5p^2 \rightarrow 1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 4s^2\ 3d^{10}\ 4p^6\ 5s^2\ 4d^{10}\ 5p^{\cancelto{0}{2}}\) Se\(^{2-}\): add 2 electrons to the neutral Se configuration => \(1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 4s^2\ 3d^{10}\ 4p^4 \rightarrow 1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 4s^2\ 3d^{10}\ 4p^6\) I\(^{-}\): add 1 electron to the neutral I configuration => \(1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 4s^2\ 3d^{10}\ 4p^6\ 5s^2\ 4d^{10}\ 5p^5 \rightarrow 1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 4s^2\ 3d^{10}\ 4p^6\ 5s^2\ 4d^{10}\ 5p^6\) Ni\(^{2+}\): remove 2 electrons from the neutral Ni configuration => \(1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 4s^2\ 3d^8 \rightarrow 1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 4s^{\cancelto{0}{2}}\ 3d^8\)
04

Write the final electron configurations for the ions

The electron configurations for the given ions are as follows: P\(^{5+}\): \(1s^2\ 2s^2\ 2p^6\ 3s^2\) P\(^{3-}\): \(1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\) Sn\(^{4+}\): \(1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 4s^2\ 3d^{10}\ 4p^6\ 5s^2\ 4d^{10}\) Se\(^{2-}\): \(1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 4s^2\ 3d^{10}\ 4p^6\) I\(^{-}\): \(1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 4s^2\ 3d^{10}\ 4p^6\ 5s^2\ 4d^{10}\ 5p^6\) Ni\(^{2+}\): \(1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6\ 3d^8\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

With regard to electron configuration, what do all the elements in Group IIA of the periodic table have in common?

Explain why hydrogen fluoride (HF) has a higher boiling temperature than hydrogen chloride \((\mathrm{HCl})\left(19.4^{\circ} \mathrm{C}\right.\) vs. \(\left.-85^{\circ} \mathrm{C}\right)\), even though HF has a lower molecular weight.

The net potential energy between two adjacent ions, \(E_{N}\), may be represented by the sum of Equations \(2.9\) and \(2.11\); that is, $$ E_{N}=-\frac{A}{r}+\frac{B}{r^{n}} $$ Calculate the bonding energy \(E_{0}\) in terms of the parameters \(A, B\), and \(n\) using the following procedure: 1\. Differentiate \(E_{N}\) with respect to \(r\), and then set the resulting expression equal to zero, because the curve of \(E_{N}\) versus \(r\) is a minimum at \(E_{0}\). 2\. Solve for \(r\) in terms of \(A, B\), and \(n\), which yields \(r_{0}\), the equilibrium interionic spacing. 3\. Determine the expression for \(E_{0}\) by substituting \(r_{0}\) into Equation 2.17.

For an \(\mathrm{Na}^{+}-\mathrm{Cl}^{-}\)ion pair, attractive and repulsive energies \(E_{A}\) and \(E_{R}\), respectively, depend on the distance between the ions \(r\), according to $$ \begin{aligned} &E_{A}=-\frac{1.436}{r} \\ &E_{R}=\frac{7.32 \times 10^{-6}}{r^{8}} \end{aligned} $$ For these expressions, energies are expressed in electron volts per \(\mathrm{Na}^{+}-\mathrm{Cl}^{-}\)pair, and \(r\) is the distance in nanometers. The net energy \(E_{N}\) is just the sum of the preceding two expressions. (a) Superimpose on a single plot \(E_{N}, E_{R}\), and \(E_{A}\) versus \(r\) up to \(1.0 \mathrm{~nm}\). (b) On the basis of this plot, determine (i) the equilibrium spacing \(r_{0}\) between the \(\mathrm{Na}^{+}\)and \(\mathrm{Cl}^{-}\) ions, and (ii) the magnitude of the bonding energy \(E_{0}\) between the two ions. (c) Mathematically determine the \(r_{0}\) and \(E_{0}\) values using the solutions to Problem 2.18, and compare these with the graphical results from part (b).

Potassium iodide (KI) exhibits predominantly ionic bonding. The \(\mathrm{K}^{+}\)and \(\mathrm{I}^{-}\)ions have electron structures that are identical to which two inert gases?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free