For each of the periodic functions in Problems 5.1 to 5.11 , use Dirichlet's theorem to find the value to which the Fourier series converges atx=0,±π/2,±π,±2π .

Short Answer

Expert verified

The convergence points are:

x

f(x)

0

12

-ττ2

12

ττ2

12

-ττ

12

ττ

12

role="math" localid="1659415854179" -2ττ

12

2ττ

12

Step by step solution

01

Given

The given function is

.fx=1,-π<x<-π2and0<x<π20,-π2<x<0andπ2<xπ

The given points arex=0,±π2,±π,±2π

02

Definition of Fourier series

The Fourier series for the function :

f(x)=a02+∑n=1∞(ancosnx+bnsinnx)a0=1π∫-ππf(x)dxan=1π∫-ππf(x)cosnxdxbn=1π∫-ππf(x)sinnxdx

Iff(x)isanevenfunction:bn=0f(x)=a02+∑n=1∞ancosnx

Iff(x)isanoddfunction:a0=an=0f(x)=∑n=1∞bnsinnx

03

Sketch the function

The sketch for the given function is shown below.

04

 Step 4: Find the Coefficients

The given function is an odd function (remove the mean value).

When,

a0=1π∫-ππfxdxa0=1π∫-π-π2dx+∫0π2dxa0=1πx-π-π2dx+x0π2dx

When, a0=1.

bn=1π∫-ππfxsinnxdxbn=1π∫-π-π2sinnxdx+∫0π2sinnxdxbn=1nπ-cosnx-π-π2dx+-cosnx0π2bn=1nπ2cosnπ2-1+-1n

Coefficients of bnare 0,42ττ,0,0,0,46ττ,0,0,0,.....where n>0.

The expansion is fx=12+4ττ∑n=2+4m∞sinnxn,where m=0,1,2,.......

05

Use Fourier series and find the convergence points

The Fourier series converges to fx→AtAt all points where f is continuous.

And, the Fourier series converges to12fx++fx-→at all points where f is discontinuous.

Therefore the series converges to the average value of the right and left limits at a point of discontinuity.

At point, .

fx=12f0++f0-fx=121+0fx=12

At point,localid="1660823675680" x=-Ï€2

localid="1660823682313" fx=12f-Ï€2++f-Ï€2-fx=120+1fx=12

At point,localid="1660823690198" x=Ï€2.

localid="1660823696484" fx=12fπ2++fπ2-fx=120+1fx=12

At point,localid="1660823700927" x=-Ï€.

localid="1660823707336" fx=12f-Ï€++f-Ï€-fx=121+0fx=12

At point,localid="1660823714350" x=-2Ï€.

localid="1660823722025" fx=12f-2Ï€++f-2Ï€-fx=121+0fx=12

At point,localid="1660823728112" x=2Ï€.

localid="1660823735419" fx=12f2Ï€++f2Ï€-fx=121+0fx=12

Hence the convergence points are:

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free