Find the inverse Laplace transform of the following functions by using (7.16) 1p4-1.

Short Answer

Expert verified

The required inverse Laplace transformation is(z+1)F(z)ezt=-e-t4.

Step by step solution

01

Determine the residue of the poles.

So now we find the residue at all poles as,

Residue at z=i,

z-iFzezt=z-ieztz-1z+1z+iz-iz-iFzezt=eztz-1z+1z+iz-iFzezt=eiti-1i+1i+iz-iFzezt=eit4i

Residue at z=-i,

z+iFzezt=z+ieztz-1z+1z+iz-iz+iFzezt=eztz-1z+1z-iz+iFzezt=eit-i-1-i+1-i-iz+iFzezt=-e-it4i

02

Determine the Laplace transform.

1p4-1 is given by sum of residue at all poles by Laplace transform,

ft=et4-e-t4+eit4i-e-it4ift=12et-e-t2+12eit-e-it2ft=12sinht+12sint

Hence, localid="1664359707172" f(t)=12sinht+12sint

03

Determine the poles using inverse transformation.

Using convolution, to find the inverse transform of 1p4-1

Rewrite it as above equation,

Fzezt=eztz4-1

Determine the poles of Fzeztby factoring the denominator as,

Fzezt=eztz4-1Fzezt=eztz2-1z2+1Fzezt=eztz-1z+1z+iz-i

Simple poles at z=±1 and z=±ihas the above equation

04

Determine the residue with simple poles.

So now we find the residues at simple all poles as:

Residue at, z=1

(z-1)F(z)ezt=(z-1)ezt(z-1)(z+1)(z+i)(z-i)(z-1)F(z)ezt=ezt(z+1)(z+i)(z-i)(z-1)F(z)ezt=et(1+1)(1+i)(1-i)(z-1)F(z)ezt=et4

Residue at, localid="1664363748661" z=-1

(z+1)F(z)ezt=(z+1)ezt(z-1)(z+1)(z+i)(z-i)(z+1)F(z)ezt=ezt(z-1)(z+i)(z-i)(z+1)F(z)ezt=e-t(-1-1)(-1+i)(-1-i)(z+1)F(z)ezt=-e-t4

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free