Question: Use the given solutions of the homogeneous equation to find a particular solution of the given equation. You can do this either by the Green function formulas in the text or by the method of variation of parameters

y''2(csc2x)y=sin2x;    cotx,1xcotx

Short Answer

Expert verified

The general solution ofx2y''2csc2xy=sin2x=R is

y=C1cotx+C2(1xcotx)π2cotx+38sin2xcotx14xcos2x

and particular solution is yp=14cos(x)2xcot(x).

Step by step solution

01

Given information

The given parameters are cot x,1xcotx

02

Definition of Green Function

In mathematics, a Green's function is the impulse response of an inhomogeneous linear differential operator defined on a domain with specified initial conditions or boundary conditions.

03

Solve the given function

y''2csc(x)2y=sin(x)2

And, given that the homogeneous solution to such differential equation, is given by

y1=cot(x)   y2=1xcot(x)

Hence, we can find the particular solution to such differential equation, using the following equation,

yp=y2(x)y1(x)f(x)W(x)dxy1(x)y2(x)f(x)W(x)dx

the Wronskian is given by

W(x)=y1y2y1'y2'And, the differentiation of the cosec function is given by,

ddxcot(x)=csc(x)2And, hence the Wronskian of the homogeneous equation, is thus

W(x)=cot(x)1xcot(x)csc(x)2cot(x)xcsc(x)2=cot(x)1xcot(x)csc(x)2cot(x)+xcsc(x)2=cot(x)2+xcsc(x)2cot(x)csc(x)2+xcot(x)csc(x)2=cot(x)2+xcsc(x)2cot(x)+csc(x)2xcot(x)csc(x)2=cot(x)2+csc(x)2=cos(x)sin(x)2+1sin(x)2=cos(x)2sin(x)2+1sin(x)2=cos(x)2+1sin(x)2

And, knowing the Wronskian of the solutions to the homogeneous equation, and comparing the given differential equation, we find that

f(x)=sin(x)2

find the particular solution to the given differential equation,

role="math" localid="1664285934259" yp=(1xcot(x))cot(x)sin(x)21dxcot(x)(1xcot(x))sin(x)21dxSimplifying,theintegration,wegetyp=(1xcot(x))cot(x)sin(x)2dxcot(x)(1xcot(x))sin(x)2dxyp=(1xcot(x))cot(x)sin(x)2dxI1cot(x)(1xcot(x))sin(x)2dxAnd,henceevaluatingtheintegral,whereyp=(1xcot(x))I1cot(x)I2Thus,evaluatingtheintegral$I_{1}$,wegetI1=cot(x)sin(x)2dxSimplifyingtheintegral,cos(x)sin(x)sin(x)2dx=cos(x)sin(x)dxhencetheintegrationisthusI1=cos(x)22+constI2=(1xcot(x))sin(x)2dxSeparatingtheintegral,weget=sin(x)2dxxcot(x)sin(x)2dx=sin(x)2dxxcos(x)sin(x)sin(x)2dx=sin(x)2dxxcos(x)sin(x)dxThus,wehave=12(1cos(2x))dxxsin(2x)2dx=12dx12cos(2x)dxxsin(2x)2dxEvaluatingtheintegral,wegetI2=12xsin(2x)4xsin(2x)2dx=x2sin(2x)4xsin(2x)2dxI3Where,theintegralI3=xsin(2x)2dx

Which can be evaluated by integration by parts, where

Hence, the integration is

I3=uvvdu=xcos(2x)4cos(2x)4dx=xcos(2x)4+cos(2x)4dx=xcos(2x)4+sin(2x)8I2=12xsin(2x)4xcos(2x)4+sin(2x)8+const.=x2sin(2x)4+xcos(2x)4sin(2x)8+const.=x23sin(2x)8+xcos(2x)4+const.And,from(a)theparticularsolutionisgivenbyyp=(1xcot(x))I1cot(x)I2Hence,=I1xcot(x)I1cot(x)I2=cos(x)22xcot(x)cos(x)22cot(x)x23sin(2x)8+xcos(2x)4Now,wetrytofindasimplerformforthisparticularsolution,=cos(x)22+xcot(x)cos(x)22xcot(x),3cot(x)sin(2x)   xcot(x)cos(2x)xcot(x)2+3cot(x)sin(2x)8xcot(x)cos(2x)4=cos(x)22+xcot(x)cot(x)22cos(2x)4xcot(x)2+38cot(x)(2sin(x)cos(x))=cos(x)22+xcot(x)cot(x)22cosx24+sin(x)24xcot(x)2+384cos(x)sin(x)(2sin(x)cos(x))=cos(x)22+xcot(x)cosx24+sin(x)24xcot(x)2+34cos=cos(x)212+34+xcot(x)4cosx2+sin(x)2xcot(x)22=cos(x)214+xcot(x)4[1]xcot(x)2=cos(x)24+xcot(x)1412=cos(x)24xcot(x)4=14cos(x)2xcot(x)Thus,theparticularsolutiontothegivendifferentialequation,ishenceyp=14cos(x)2xcot(x)uncaught exception: Invalid chunk

in file: /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 68
#0 /var/www/html/integration/lib/php/Boot.class.php(769): com_wiris_plugin_impl_HttpImpl_1(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Invalid chunk') #1 /var/www/html/integration/lib/haxe/Http.class.php(532): _hx_lambda->execute('Invalid chunk') #2 /var/www/html/integration/lib/php/Boot.class.php(769): haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Invalid chunk') #3 /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(30): _hx_lambda->execute('Invalid chunk') #4 /var/www/html/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Invalid chunk') #5 /var/www/html/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), Object(sys_net_Socket), NULL) #6 /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(43): haxe_Http->request(true) #7 /var/www/html/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(268): com_wiris_plugin_impl_HttpImpl->request(true) #8 /var/www/html/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(307): com_wiris_plugin_impl_RenderImpl->showImage('a2e58aee9f1d6d7...', NULL, Object(PhpParamsProvider)) #9 /var/www/html/integration/createimage.php(17): com_wiris_plugin_impl_RenderImpl->createImage('" width="0" height="0" role="math">


Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free