Question: Use the Green function of Problem 6 to solve y''a2y=et,    y0=y0'=0.

Short Answer

Expert verified

The value of value ofy''a2y=et, where y0=y0'y0'=0is

y(t)=acosh(at)aetsinh(at)aa21

This, is the solution to the given differential equation for all else, the solution is zero.

Step by step solution

01

Given information

The given expressions are y''a2y=et.

02

Definition of Integration By Parts

Integration by partsor partial integration is a process that finds theintegralof aproductoffunctionsin terms of the integral of the product of theirderivativeandanti-derivative.

03

Solve the given function

Use the function.

y=0    0<t'<t01asinatt'    0<t'<ty(t)=0tdt'1αsinatt'ef'Thus,wehaveI=0t1asinhatt'et'dt'=uvt00tvdu=et'sinhatt't00tacoshatt'et'dt'Again,weuseintegrationbypartstoevaluatethelastintegral,hencewehaveI1=0tcoshatt'et'dt'=et'coshatt't00tasinhatt'et'dt'Thus,wehaveI=et'sinhatt't0a0tcoshatt'et'dt'=I=et'sinhatt't0aet'coshatt't0aII=(0+1sinh(at))aet1+cosh(at)aII=sinh(at)+aetacosh(at)+a2IHencetheevaluationoftheintegralIisthus,I1a2=sinh(at)+aetacosh(at)I=sinh(at)+aetacosh(at)1a2And,thesolutiontothedifferentialequationisgivenbyy(t)=1aIThus,wehavey(t)=sinh(at)+aetacosh(at)a1a2y(t)=acosh(at)aetsinh(at)aa21This,isthesolutiontothegivendifferentialequationforallt>t'>0else,thesolutioniszero.uncaught exception: Invalid chunk

in file: /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 68
#0 /var/www/html/integration/lib/php/Boot.class.php(769): com_wiris_plugin_impl_HttpImpl_1(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Invalid chunk') #1 /var/www/html/integration/lib/haxe/Http.class.php(532): _hx_lambda->execute('Invalid chunk') #2 /var/www/html/integration/lib/php/Boot.class.php(769): haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Invalid chunk') #3 /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(30): _hx_lambda->execute('Invalid chunk') #4 /var/www/html/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Invalid chunk') #5 /var/www/html/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), Object(sys_net_Socket), NULL) #6 /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(43): haxe_Http->request(true) #7 /var/www/html/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(268): com_wiris_plugin_impl_HttpImpl->request(true) #8 /var/www/html/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(307): com_wiris_plugin_impl_RenderImpl->showImage('b6d77247b06c019...', NULL, Object(PhpParamsProvider)) #9 /var/www/html/integration/createimage.php(17): com_wiris_plugin_impl_RenderImpl->createImage('" width="0" height="0" role="math">y=0    0<t'<t01asinatt'    0<t'<ty(t)=0tdt'1αsinatt'ef'

Thus,wehaveI=0t1asinhatt'et'dt'=uvt00tvdu=et'sinhatt't00tacoshatt'et'dt'Again,weuseintegrationbypartstoevaluatethelastintegral,hencewehaveI1=0tcoshatt'et'dt'=et'coshatt't00tasinhatt'et'dt'

Thus,wehaveI=et'sinhatt't0a0tcoshatt'et'dt'=I=et'sinhatt't0aet'coshatt't0aII=(0+1sinh(at))aet1+cosh(at)aII=sinh(at)+aetacosh(at)+a2IHencetheevaluationoftheintegralIisthus,I1a2=sinh(at)+aetacosh(at)I=sinh(at)+aetacosh(at)1a2And,thesolutiontothedifferentialequationisgivenbyy(t)=1aIThus,wehavey(t)=sinh(at)+aetacosh(at)a1a2y(t)=acosh(at)aetsinh(at)aa21This,isthesolutiontothegivendifferentialequationforallt>t'>0else,thesolutioniszero.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free