If u+v=x3-y3+4,u2-v2=x2y2+1, find (∂u∂x)y,(∂u∂x)v,(∂x∂u)y,(∂x∂u)vat(x,y,u,v)=(2,-1,3,2).

Short Answer

Expert verified

The value of(∂u∂x)y is 43.

The value of(∂u∂x)v is 145.

The value of(∂x∂u)y is 34.

The value of(∂x∂u)v is 514.

Step by step solution

01

Given information.

Givenu2+v2=x3-y3+4,u2-v2=x2y2+1

02

Definition of partial differentiation.

Partial differentiation is defined as the process, in which find the partial derivative of a function.

In Partial differentiation, the function has more than one variable and find the partial derivative of a function with respect to one variable and keeping the other variable constant.

03

Find (∂u∂x)y.

Find the partial differentiation of function,u2+v2=x3-y3+4with respect to x.

2u∂u∂x+2v∂v∂x=3x2-3y2∂y∂x...........(1)

Now find the partial differentiation of function,u2-v2=x2y2+1with respect to x.

2u∂u∂x-2v∂v∂x=2xy2+2x2y∂y∂x........(2)

Add both equations and simplify it.

4u∂u∂x=3x2+2xy2-3y2∂y∂x+2x2y∂ydx∂u∂x=1u3x2+2xy2-3y2∂v∂x+2x2y∂ydx

Now find∂u∂xy by keeping is constant.

∂u∂xy=14.33.22+2.2.-12=11212+4=1612=43

Substitute the values of ∂u∂xyis 43.

04

Find (∂u∂x)v. 

From equation (1), find (∂u∂u)v by keeping v is a constant.

2u(∂u∂x)v+2v.0=3x2-3y2∂y∂x2u(∂u∂x)v=3x2-3y2∂y∂x...........3

Similarly from equation (2), find ∂u∂xvby keeping v is a constant.

2u∂y∂xv-2y.0=2xy2+2x2y∂y∂x2u∂y∂xv=2xy2+2x2y2u∂y∂x...........4

From equation (3) and (4),

3x2-3y2∂y∂x=2xy2+2x2y∂y∂x-∂y∂x3y2+2x2y=2xy2-3x2∂y∂x=3x2-2xy23y22x2y...........5

Now substitute the value of∂y∂xfrom equation (5) into equation (3) and find ∂u∂xv.

2u∂u∂xv=3x2-3y23x2-2xy23y2+2x2y2u∂u∂xv=9x2y2+6x2y-9x2y2+6xy43y2+2x2y∂u∂xv=12u9x2y2+6x2y-9x2y2+6xy43y2+2x2y

Substitute the values (x,y,u,v)=(2,-1,3,2).

∂u∂xv=12u9x2y2+6x2y-9x2y2+6xy23y2+2x2y=169×4×1-6×16×1-9×4×1+6×2×13×1-2×4×1=1636-96-36+123-8=16-84-5=145Hencethevalueof∂u∂xvis145.

05

Find (∂x∂u)y.

Find the partial differentiation of function,u2+v2=x3-y3+4with respect to u.

2u+2v∂v∂u=3x2∂x∂u-3y2∂y∂u..........(6)

Now find the partial differentiation of function,u2-v2=x2y2+1 with respect to u.

2u-2v∂v∂u=2xy2∂x∂u+2x2y∂y∂u........(7)

Now find ∂x∂uyfrom equation (6) by keeping y is constant.

2u+2v∂v∂u=3x2∂v∂uy-3y2.0∂x∂uy=13x22u+2v∂v∂u.........8

Now find∂x∂uy from equation (7) by keepingy is constant.

2u-2v∂v∂u=2xy2∂v∂uy+2xy2.02u-2v∂v∂u=2xy2∂v∂uy∂x∂uy=12xy22u-2v∂v∂u.........9

From equation (8) and (9), find the value of ∂y∂u.

13x22u+2v∂v∂u=12xy22u-2v∂v∂u2u+2v∂v∂u=3x22xy22u-2v∂v∂u2v∂v∂u1+3x2y2=2u3x2y2-1∂v∂u=u3x2y2-1v1+3x2y2

Now substitute the value of∂v∂uin to equation (8).

∂x∂uy=13x22u+2v.u3x2y2-1v1+3x2y2=13x22u+2v.3x2y2-11+3x2y2=2u3x21+3x2y2-11+3x2y2

Substitute the values (x,y,u,v)=(2,-1,3,2).

∂x∂vy=2u3x21+3x2y2-11+3x2y2=6121+62-11+62=121+24=12×32=32

Hence the value of∂x∂vyis34.

06

Find (∂x∂u)v .

The partial differentiation of function,u2+v2=x3-y3+4 with respect tou is as follows:

2u+2v∂v∂u=3x2∂x∂u-3y2∂y∂u..........(10)

The partial differentiation of function,u2-v2=x2y2+1 with respect to u. Is as follows:

2u-2v∂v∂u=2xy2∂x∂u+2x2y∂y∂u........(11)

Now find∂x∂uv from equation (10) by keepingv is constant.

2u+2v.0=3x2∂x∂uv-3y2∂y∂u3x2∂x∂uv=3y2∂y∂u+2u∂x∂uv=13x23x2∂y∂u+2u............12

Now find ∂x∂uv from equation (11) by keeping v is constant.

2u+2v.0=2xy2∂x∂uv+2x2y∂y∂u2xy2∂x∂uv=2u-2x2y∂y∂u∂x∂uv=12xy22u-2x2y∂y∂u............13

From equation (12) and (13), find the value of ∂y∂u.

13x23y2∂y∂u+2u=12xy22u-2x2y∂v∂u3y2∂y∂u+2u=3x22xy22u-2x2y∂y∂u∂y∂u3y2+6x2y2xy2=6x2y2xy2-2u∂y∂u3y2+3x2y=u3xy2-2∂y∂uu3xy2-23y23x3y

Now substitute the value of ∂y∂uin to equation (12).

∂x∂uv=13x23y2u3xy2-23y2+3x3y+2u=uy23xy2-2x23y23x3y+2u3x2

Substitute the values (x,y,u,v)=(2,-1,3,2).

∂x∂uv=uy23x2y2-2x23y2+3x3y+2u3x2=361-243+24-1+612

Now simplify the expression.

∂x∂uv=12-84+12=-17+12=-2+714=514

Hence the value of∂x∂uv is 514.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free