Ifz=sinxcosxsintdt,finddzdx.

Short Answer

Expert verified

The value ofdzdx islocalid="1659235323161" -sin(cosx)tanx-sin(sinx)cotx.

Step by step solution

01

Given Information

Given the value of z=sinxcosxsinttdt …. (1)

02

Finding dzdx

We know thatddxu(x)v(x)f(x,t)dt=f(x,v)dvdx-f(x,u)dudx+uvfxdt...(2)

On Compare equation (1) and equation (2), then the given function become ddxsinxcosxsintt=sin(cosx)cosx.ddx(cosx)-sin(sinx)sinx.ddx(sinx)+sinxcosx0.dtddxsinxcosxsinttdt=sin(cosx)cosx.(-sinx)-sin(sinx)sinx(cosx)ddxsinxcosxsinttdt=sin(cosx)-sinxcosx-sin(sinx)(cosxsinx

Therefore

ddxsinxcosxsinttdt=sin(cosx)(-tanx)-sin(sinx)(cotx)ddxsinxcosxsinttdt=-sin(cosx)tanx-sin(sinx)cotx

Therefore, dzdx=-sin(cosx)tanx-sin(sinx)cotx.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free