For Problems 1 to 4 , find one (simple) solution of each differential equation by series, and then find the second solution by the "reduction of order" method, Chapter 8 , Section 7 (e).

x2y''+(x+1)y'-y=0.

Short Answer

Expert verified

One simple solution and the second solution by the reduction of order method is

y1(x)=c0(1+x)y2(x)=K-13x2-16x-13-12x+x2+x3+

Step by step solution

01

Concept of reduction of order method and the Fuchs’s theorem 

Reduction of order is a technique in mathematics for solving second-order linear ordinary differential equations. It is employed when one solutiony1(x)is known and the second linearly independent solution y2(x) is desired. The method also applies to n-th order equations. In this case (n-1)the ansatz will yield an order equation for v

Fuchs’s theorem:

If the differential equation is in the form

Satisfies the conditions of Fuchs's Theorem then it hasy''+f(x)y'+g(x)y=0

  1. Two Frobenius series or
  2. One solution S1 x which is a Frobenius series, and a second solution which is
  3. s1xIn(x)+s2xIn(x)where S2(x) is another Frobenius series.
02

Use the concept of the reduction order for calculation 

Given differential equation is. x2y''+(x+1)y'-y=0 …… (1)

Observe that,

x=0,-1 are the singular points of the given differential equations.

After dividing the equation byx2 , obtain:

y''+x+1x2y'+-1x2y=0 …… (2)

Conditions of Fuchs's theorem:

Consider the differential of the form:

y''+f(x)y'+g(x)y=0 …… (3)

If xf(x) and x2 g(x) are expandable in convergent power series n=0anxn, we say that

the differential equation (3) is a regular (or has a nonessential singularity) on the origin of these conditions is called Fuchs’s theorem.

By comparing the differential equation (2) with (3), to get f(x)=x+1x2 and g(x)=-1x2

Now, consider xf(x)

xf(x)=x·x+1x2=x+1x.

Which is analytic everywhere exceptx=0 and hence xf(x) does not have a convergent

Power series representation at x=0

Hence, the given differential equation does not satisfy the Conditions of Fuchs's theorem.

Suppose that, y=n=0mcnxn+rbe the solution of the given differential equation.

As,y=n=1cnxn+r we have that:

y'=n=0(n+r)cnxn+r-1andy''=n=0(n+r)(n+r-1)cnxn+r-2

03

Calculate the equation for the solution

Then calculate as follows:

x2y''+(x+1)y'-y=x2n=0(n+r)(n+r-1)cnxn+r-2+(x+1)n=0m(n+r)cnxn+r-1-n=0cnxn+r=x2n=0(n+r)(n+r-1)cnxn+r-2+xn=0m(n+r)cnxn+r-1+n=0(n+r)cnxn+r-1-n=0cnxn+r=n=0(n+r)(n+r-1)cnxn+r+n=0(n+r)cnxn+r+n=0(n+r)cnxn+r-1-n=0cnxn+r

Simplify further as follows:

x2y''+(x+1)y'-y=n=0(n+r)Cnxn+r-1+[n=0(n+r)(n+r-1+1)-1]Cnxn+r+=n=0(n+r)Cnxn+r-1+[n=0(n+r)2-1]Cnxn+r+=xr[rc0+n=1(n+r)cnxn+r-1+n=0(n+r)2-1cnxn+r]=xr[rc0+n=1(n+r)cnxn-1k=n-1+n=0(n+r)2-1cnxnk=n]

04

Simplify further for the solution

Simplify further as follows:

x2y''+(x+1)y'-y=xrrc0+k=0(k+r+1)ck+1xk+k=0(k+r)2-1ckxk=xrrc0+k=0(k+r+1)ck+1+(k+r)2-1ckxkThisimpliesthat,rc0=0and(k+r+1)ck+1+(k+r)2-1ck=0k=0,1,2,3,.BecausenothingisgainedbytakingC0=0,wemustthenhaver=0.Theseindicialrootsare,r=0Ck+1=-(k+r)2-1(k+r+1)Ckandk=0,1,2,3,.Forr=0from4,obtain:Ck+1=-k2-1(k+1)ck(1-k)ck,k=0,1,2,Fromequation5obtain:c1=(1-0)c0=c0c2=(1-1)c1=0so,cn=0Thus,theindicialrootsr=0weobtainthesolution.y=n=0cnxn+0=x0n=0cnxn=x0c0+c1x+c2x2++cnxn+=c0+c0x+0·x2++0·xn+so,=c0(1+x)uncaught exception: Invalid chunk

in file: /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 68
#0 /var/www/html/integration/lib/php/Boot.class.php(769): com_wiris_plugin_impl_HttpImpl_1(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Invalid chunk') #1 /var/www/html/integration/lib/haxe/Http.class.php(532): _hx_lambda->execute('Invalid chunk') #2 /var/www/html/integration/lib/php/Boot.class.php(769): haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Invalid chunk') #3 /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(30): _hx_lambda->execute('Invalid chunk') #4 /var/www/html/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Invalid chunk') #5 /var/www/html/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), Object(sys_net_Socket), NULL) #6 /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(43): haxe_Http->request(true) #7 /var/www/html/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(268): com_wiris_plugin_impl_HttpImpl->request(true) #8 /var/www/html/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(307): com_wiris_plugin_impl_RenderImpl->showImage('683c740e2602f4a...', NULL, Object(PhpParamsProvider)) #9 /var/www/html/integration/createimage.php(17): com_wiris_plugin_impl_RenderImpl->createImage('" width="0" height="0" role="math">x2y''+(x+1)y'-y=xrrc0+k=0(k+r+1)ck+1xk+k=0(k+r)2-1ckxk=xrrc0+k=0(k+r+1)ck+1+(k+r)2-1ckxkThisimpliesthat,rc0=0and(k+r+1)ck+1+(k+r)2-1ck=0k=0,1,2,3,.BecausenothingisgainedbytakingC0=0,wemustthenhaver=0.Theseindicialrootsare,r=0Ck+1=-(k+r)2-1(k+r+1)Ckandk=0,1,2,3,.Forr=0from4,obtain:Ck+1=-k2-1(k+1)ck(1-k)ck,k=0,1,2,Fromequation5obtain:c1=(1-0)c0=c0c2=(1-1)c1=0so,cn=0Thus,theindicialrootsr=0weobtainthesolution.y=n=0cnxn+0=x0n=0cnxn=x0c0+c1x+c2x2++cnxn+=c0+c0x+0·x2++0·xn+so,=c0(1+x)uncaught exception: Invalid chunk

in file: /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 68
#0 /var/www/html/integration/lib/php/Boot.class.php(769): com_wiris_plugin_impl_HttpImpl_1(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Invalid chunk') #1 /var/www/html/integration/lib/haxe/Http.class.php(532): _hx_lambda->execute('Invalid chunk') #2 /var/www/html/integration/lib/php/Boot.class.php(769): haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Invalid chunk') #3 /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(30): _hx_lambda->execute('Invalid chunk') #4 /var/www/html/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Invalid chunk') #5 /var/www/html/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), Object(sys_net_Socket), NULL) #6 /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(43): haxe_Http->request(true) #7 /var/www/html/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(268): com_wiris_plugin_impl_HttpImpl->request(true) #8 /var/www/html/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(307): com_wiris_plugin_impl_RenderImpl->showImage('683c740e2602f4a...', NULL, Object(PhpParamsProvider)) #9 /var/www/html/integration/createimage.php(17): com_wiris_plugin_impl_RenderImpl->createImage('" width="0" height="0" role="math">x2y''+(x+1)y'-y=xrrc0+k=0(k+r+1)ck+1xk+k=0(k+r)2-1ckxk=xrrc0+k=0(k+r+1)ck+1+(k+r)2-1ckxk

This implies that, rc0 =0.x2y''+(x+1)y'-y=xrrc0+k=0(k+r+1)ck+1xk+k=0(k+r)2-1ckxk=xrrc0+k=0(k+r+1)ck+1+(k+r)2-1ckxkThisimpliesthat,rc0=0and(k+r+1)ck+1+(k+r)2-1ck=0k=0,1,2,3,.BecausenothingisgainedbytakingC0=0,wemustthenhaver=0.Theseindicialrootsare,r=0Ck+1=-(k+r)2-1(k+r+1)Ckandk=0,1,2,3,.Forr=0from4,obtain:Ck+1=-k2-1(k+1)ck(1-k)ck,k=0,1,2,Fromequation5obtain:c1=(1-0)c0=c0c2=(1-1)c1=0so,cn=0Thus,theindicialrootsr=0weobtainthesolution.y=n=0cnxn+0=x0n=0cnxn=x0c0+c1x+c2x2++cnxn+=c0+c0x+0·x2++0·xn+so,=c0(1+x)uncaught exception: Invalid chunk

in file: /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 68
#0 /var/www/html/integration/lib/php/Boot.class.php(769): com_wiris_plugin_impl_HttpImpl_1(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Invalid chunk') #1 /var/www/html/integration/lib/haxe/Http.class.php(532): _hx_lambda->execute('Invalid chunk') #2 /var/www/html/integration/lib/php/Boot.class.php(769): haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Invalid chunk') #3 /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(30): _hx_lambda->execute('Invalid chunk') #4 /var/www/html/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Invalid chunk') #5 /var/www/html/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), Object(sys_net_Socket), NULL) #6 /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(43): haxe_Http->request(true) #7 /var/www/html/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(268): com_wiris_plugin_impl_HttpImpl->request(true) #8 /var/www/html/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(307): com_wiris_plugin_impl_RenderImpl->showImage('683c740e2602f4a...', NULL, Object(PhpParamsProvider)) #9 /var/www/html/integration/createimage.php(17): com_wiris_plugin_impl_RenderImpl->createImage('" width="0" height="0" role="math">x2y''+(x+1)y'-y=xrrc0+k=0(k+r+1)ck+1xk+k=0(k+r)2-1ckxk=xrrc0+k=0(k+r+1)ck+1+(k+r)2-1ckxkThisimpliesthat,rc0=0and(k+r+1)ck+1+(k+r)2-1ck=0k=0,1,2,3,.BecausenothingisgainedbytakingC0=0,wemustthenhaver=0.Theseindicialrootsare,r=0Ck+1=-(k+r)2-1(k+r+1)Ckandk=0,1,2,3,.Forr=0from4,obtain:Ck+1=-k2-1(k+1)ck(1-k)ck,k=0,1,2,Fromequation5obtain:c1=(1-0)c0=c0c2=(1-1)c1=0so,cn=0Thus,theindicialrootsr=0weobtainthesolution.y=n=0cnxn+0=x0n=0cnxn=x0c0+c1x+c2x2++cnxn+=c0+c0x+0·x2++0·xn+so,=c0(1+x)uncaught exception: Invalid chunk

in file: /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php line 68
#0 /var/www/html/integration/lib/php/Boot.class.php(769): com_wiris_plugin_impl_HttpImpl_1(Object(com_wiris_plugin_impl_HttpImpl), NULL, 'http://www.wiri...', 'Invalid chunk') #1 /var/www/html/integration/lib/haxe/Http.class.php(532): _hx_lambda->execute('Invalid chunk') #2 /var/www/html/integration/lib/php/Boot.class.php(769): haxe_Http_5(true, Object(com_wiris_plugin_impl_HttpImpl), Object(com_wiris_plugin_impl_HttpImpl), Array, Object(haxe_io_BytesOutput), true, 'Invalid chunk') #3 /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(30): _hx_lambda->execute('Invalid chunk') #4 /var/www/html/integration/lib/haxe/Http.class.php(444): com_wiris_plugin_impl_HttpImpl->onError('Invalid chunk') #5 /var/www/html/integration/lib/haxe/Http.class.php(458): haxe_Http->customRequest(true, Object(haxe_io_BytesOutput), Object(sys_net_Socket), NULL) #6 /var/www/html/integration/lib/com/wiris/plugin/impl/HttpImpl.class.php(43): haxe_Http->request(true) #7 /var/www/html/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(268): com_wiris_plugin_impl_HttpImpl->request(true) #8 /var/www/html/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(307): com_wiris_plugin_impl_RenderImpl->showImage('683c740e2602f4a...', NULL, Object(PhpParamsProvider)) #9 /var/www/html/integration/createimage.php(17): com_wiris_plugin_impl_RenderImpl->createImage('" width="0" height="0" role="math">

and(k+r+1)ck+1+(k+r)2-1ck=0k=0,1,2,3,.

Because nothing is gained by taking c0 =0.we must then have r=0.

Ck+1=-(k+r)2-1(k+r+1)Ckk=0,1,2,3,.Forr=0from4,obtain:Ck+1=-k2-1(k+1)ck(1-k)ck,k=0,1,2,Fromequation5obtain:c1=(1-0)c0=c0c2=(1-1)c1=0So,cn=0.

Thus, the indicial roots r=0 we obtain the solution.

y=n=0cnxn+0=x0n=0cnxn=x0c0+c1x+c2x2++cnxn+=c0+c0x+0·x2++0·xn+=c0(1+x)

Thus, one solution of the given differential equation is,y1(x)=c0(1+x) .

Reducing the order

To find the second solution of, y''+f(x)y'+g(x)y=0 . …… (6)

Give one solution u(x), substitute.

y=u(x)v(x)

Into (5) the solve for, .

y''+x+1x2y'+-1x2y=0

05

Rewrite differential equation (1)

On rewriting the differential equation (1), obtain:

y=(1+x)v(x)y'=(1+x)v'+vy''=(1+x)v''+2v'Calculatefurtherasfollows:(1+x)v''+2v'+x+1x2(1+x)v'+v+-1x2(1+x)v=0x2(1+x)v''+2x2v'+(1+x)2v'-(1+x)v=0v''v'=2x2+(1+x)2x2(1+x)=2x2x2(1+x)+(1+x)2x2(1+x)

=21+x+x+1x2=21+x+1x+1x2lnv'=211+xdx+1xdx+1x2dx=2ln(x+1)+lnx-1x+lnKSimplifyfurtherasfollows:=lnKx(x+1)2-1xv'=Kx(x+1)2e--1xdx=Kxx2+2x+1e-1xdx=Kx3+2x2+11-1x+12x2-13x2+dxTherefore,=K-13x2-16x-13-12x+x2+x3+y2(x)=K-13x2-16x-13-12x+x2+x3+

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free