Chapter 7: Problem 45
Show that the integral depends linearly on the form: $$ \int_{\sigma} \lambda_{1} \omega_{1}+\lambda_{2} \omega_{2}=\lambda_{1} \int_{\sigma} \omega_{1}+\lambda_{2} \int_{\theta} \omega_{2} . $$
Chapter 7: Problem 45
Show that the integral depends linearly on the form: $$ \int_{\sigma} \lambda_{1} \omega_{1}+\lambda_{2} \omega_{2}=\lambda_{1} \int_{\sigma} \omega_{1}+\lambda_{2} \int_{\theta} \omega_{2} . $$
All the tools & learning materials you need for study success - in one app.
Get started for freeShow that the mapping $$ \left(w_{1}, \omega_{2}\right) \rightarrow w_{1} \wedge w_{2} $$ is bilinear and skew symmetric: $$ \begin{gathered} \omega_{1} \wedge \omega_{2}=-\omega_{2} \wedge \omega_{1} \\ \left(\lambda^{\prime}\left(\omega_{1}^{\prime}+\lambda^{\prime \prime} \omega_{1}^{\prime \prime}\right) \wedge \omega_{2}=\lambda^{\prime} \omega_{1}^{\prime} \wedge \omega_{2}+\lambda^{N} \omega_{1}^{\prime \prime} \wedge \omega_{2}\right. \end{gathered} $$
Find the first Betti number of the torus \(T^{2}=S^{1} \times S^{1}\).
Prove the formulas for differentiating a sum and a product: $$ d\left(\omega_{1}+\omega_{2}\right)=d \omega_{1}+d \omega_{2} . $$ and $$ d\left(\omega^{k} \wedge \omega^{\prime}\right)=d \omega^{k} \wedge \omega^{\prime}+(-1)^{k} \omega^{k} \wedge d \omega^{l} . $$
Show that \(\omega_{1} \wedge \cdots \wedge \omega_{k}\) is a \(k\)-form.
Calculate the value of the forms \(\omega_{1}=d x_{2} \wedge d x_{3}, \omega_{2}=x_{1} d x_{3} \wedge d x_{2}\), and \(\omega_{3}=d x_{3} \wedge d r^{2}\left(r^{2}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)\), on the pair of vectors \(\xi=(1,1,1), \eta=(1,2,3)\) at the point \(\mathbf{x}=(2,0,0)\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.