Show that $$ \begin{aligned} \operatorname{div}[\mathbf{A}, \mathbf{B}] &=(\operatorname{curl} \mathbf{A}, \mathbf{B})-(\operatorname{curl} \mathbf{B}, \mathbf{A}), \\ \operatorname{curl} a \mathbf{A} &=\lfloor\operatorname{grad} a, \mathbf{A}]+a \text { curl } \mathbf{A}, \\ \operatorname{div} a \mathbf{A} &=(\operatorname{grad} a, \mathbf{A})+a \operatorname{div} \mathbf{A} . \end{aligned} $$

Short Answer

Expert verified
#Question# Prove the following vector properties involving divergence, curl, and gradient: 1) div(A x B) = (curl A, B) - (curl B, A) 2) curl(aA) = (grad a, A) + a(curl A) 3) div(aA) = (grad a, A) + a(div A) #Answer# 1) The first property is proven using the identity for the curl of cross products: div(A x B) = (curl A, B) - (curl B, A). 2) The second property is proven using the vector triple product identity: curl(aA) = (grad a, A) + a(curl A). 3) The third property is proven using the product rule of dot products: div(aA) = (grad a, A) + a(div A).

Step by step solution

01

Proof for Property 1

To prove the first property, we have: $$ \operatorname{div}[\mathbf{A}, \mathbf{B}] = (\operatorname{curl} \mathbf{A}, \mathbf{B}) - (\operatorname{curl} \mathbf{B}, \mathbf{A}) $$ We know that the divergence of the cross product of two vectors is given by: $$ \operatorname{div}[\mathbf{A}, \mathbf{B}] = \nabla \cdot (\mathbf{A} \times \mathbf{B}) $$ Now, let's expand the cross products in the right side of the property we are trying to prove: $$ (\operatorname{curl} \mathbf{A}, \mathbf{B}) = (\nabla \times \mathbf{A}) \cdot \mathbf{B} $$ and, $$ (\operatorname{curl} \mathbf{B}, \mathbf{A}) = (\nabla \times \mathbf{B}) \cdot \mathbf{A} $$ Using the curl of cross product identity \(\nabla \cdot (\mathbf{A} \times \mathbf{B}) = (\nabla \times \mathbf{A}) \cdot \mathbf{B} - (\nabla \times \mathbf{B}) \cdot \mathbf{A}\), we get: $$ \operatorname{div}[\mathbf{A}, \mathbf{B}] = (\operatorname{curl} \mathbf{A}, \mathbf{B}) - (\operatorname{curl} \mathbf{B}, \mathbf{A}) $$ Hence, the first property is proven.
02

Proof for Property 2

To prove the second property, we need to show that: $$ \operatorname{curl} a \mathbf{A} = [\operatorname{grad} a, \mathbf{A}] + a \operatorname{curl} \mathbf{A} $$ We know that the curl operation is given by: $$ \operatorname{curl}(\mathbf{F}) = \nabla \times \mathbf{F} $$ Hence, $$ \operatorname{curl}(a\mathbf{A}) = \nabla \times (a\mathbf{A}) $$ Now, using the vector triple product identity \(\nabla \times (a\mathbf{A}) = (\nabla a) \times \mathbf{A} + a(\nabla \times \mathbf{A})\), we get: $$ \operatorname{curl}(a\mathbf{A}) = [\operatorname{grad} a, \mathbf{A}] + a \operatorname{curl} \mathbf{A} $$ Hence, the second property is proven.
03

Proof for Property 3

To prove the third property, we need to show that: $$ \operatorname{div} a \mathbf{A} = (\operatorname{grad} a, \mathbf{A}) + a \operatorname{div} \mathbf{A} $$ We know that the divergence operation is given by: $$ \operatorname{div}(\mathbf{F}) = \nabla \cdot \mathbf{F} $$ Hence, $$ \operatorname{div}(a\mathbf{A}) = \nabla \cdot (a\mathbf{A}) $$ Now, using the product rule of dot products \(\nabla \cdot (a\mathbf{A}) = (\nabla a) \cdot \mathbf{A} + a(\nabla \cdot \mathbf{A})\), we get: $$ \operatorname{div}(a\mathbf{A}) = (\operatorname{grad} a, \mathbf{A}) + a \operatorname{div} \mathbf{A} $$ Hence, the third property is proven.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Show that, under the isomorphisms established above, the exterior product of 1 -forms becomes the vector product in \(\mathbb{R}^{3}\), i.e., that $$ \omega_{\mathbf{A}}^{1} \wedge \omega_{\mathrm{B}}^{\mathrm{H}}=\omega_{\left|A_{,} \mathbf{B}\right|}^{2} \text { for any } \mathbf{A}, \mathbf{B} \in \mathbb{R}^{3} \text {. } $$ In this way the exterior product of 1 -forms can be considered as an extension of the vector product in \(\mathbb{R}^{3}\) to higher dimensions. However, in the \(n\)-dimensional case, the product is not a vector in the same space; the space of 2-forms on \(R^{n}\) is isomorphic to \(R^{n}\) only for \(n=3\).

Show that every \(k\)-form on \(\mathbb{R}^{v}\) can be uniquely represented as a linear combination of basic forms: $$ \omega^{k}=\sum_{1 \leqslant i_{3}} \sum_{k i_{4 \leq} \leqslant} a_{i_{1}, \cdots, i_{4}} x_{i_{1}} \wedge \cdots \wedge x_{i_{k}} $$

Show that the differential of a differential is equal to zero: \(d d=0\).

Show that the operation of exterior product of I-forms gives a multi-linear skewsymmetric mapping $$ \left(\omega_{1}, \ldots, \omega_{k}\right) \rightarrow \omega_{1} \wedge \ldots \wedge \omega_{k} $$ In other words, $$ \left(\lambda^{\prime} \omega_{1}^{\prime}+\lambda^{\prime \prime} \omega_{1}^{\prime}\right) \wedge \omega_{2} \wedge \cdots \wedge \omega_{k}=\lambda^{\prime} \omega_{1}^{\prime} \wedge \omega_{2} \wedge \cdots \wedge \omega_{k}+\lambda^{\prime \prime} \omega_{1}^{n} \wedge \omega_{2} \wedge \cdots \wedge \omega_{k} $$ and $$ \omega_{i_{1}} \wedge \cdots \wedge \omega_{l k}=(-1)^{\prime} \omega_{1} \wedge \cdots \wedge \omega_{k,} $$ where $$ v= \begin{cases}0 & \text { if the permutation } i_{1}, \ldots, i_{k} \text { is even, } \\ 1 & \text { if the permutation } i_{1}, \ldots, i_{k} \text { is odd. }\end{cases} $$

Show that \(\omega_{1} \wedge \omega_{2}\) really is a 2 -form.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free