Chapter 10: Problem 2
In questions 1-11 \(\Delta \mathrm{ABC}\) has a right angle at \(\mathrm{C}\). Calculate \(\sin A\) given \(\mathrm{AC}=10 \mathrm{~cm}\) and \(\mathrm{AB}=14 \mathrm{~cm}\)
Chapter 10: Problem 2
In questions 1-11 \(\Delta \mathrm{ABC}\) has a right angle at \(\mathrm{C}\). Calculate \(\sin A\) given \(\mathrm{AC}=10 \mathrm{~cm}\) and \(\mathrm{AB}=14 \mathrm{~cm}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIn questions \(1-10\) solve \(\triangle \mathrm{ABC}\) given \(\mathrm{BC}=17 \mathrm{~cm}, \mathrm{AC}=27 \mathrm{~cm}, C=45^{\circ}\)
In questions 1-11 \(\Delta \mathrm{ABC}\) has a right angle at \(\mathrm{C}\). Calculate \(\mathrm{AB}\) given \(\mathrm{AC}=12 \mathrm{~cm}\) and \(A=57^{\circ}\).
Convert the following angles to degree/ minute/second format: (a) \(7.3614^{\circ}\) (b) \(10.0932^{\circ}\) (c) \(14.9610^{\circ}\)
In questions \(1-10\) solve \(\triangle \mathrm{ABC}\) given \(\mathrm{BC}=36 \mathrm{~cm}, \mathrm{AC}=92 \mathrm{~cm}, C=51^{\circ}\)
In questions 1-11 \(\Delta \mathrm{ABC}\) has a right angle at \(\mathrm{C}\). Calculate \(A\) given \(\mathrm{AC}=14 \mathrm{~cm}\) and \(\mathrm{BC}=9 \mathrm{~cm}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.