Chapter 10: Problem 6
In questions \(1-10\) solve \(\triangle \mathrm{ABC}\) given \(\mathrm{AB}=32 \mathrm{~cm}, \mathrm{BC}=30 \mathrm{~cm}, \mathrm{AC}=41 \mathrm{~cm}\)
Chapter 10: Problem 6
In questions \(1-10\) solve \(\triangle \mathrm{ABC}\) given \(\mathrm{AB}=32 \mathrm{~cm}, \mathrm{BC}=30 \mathrm{~cm}, \mathrm{AC}=41 \mathrm{~cm}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeFor questions \(1-10\) solve \(\triangle \mathrm{ABC}\) given \(B=18^{\circ}, C=110^{\circ}, \mathrm{BC}=12.3 \mathrm{~cm}\)
Convert the following angles to decimal format; (a) \(36^{\circ} 29^{\prime} 42^{\prime \prime}\) (b) \(1^{\circ} 2^{\prime} 41^{\prime \prime}\) (c) \(10^{\circ} 12^{\prime} 21^{\prime \prime}\)
In questions 1-11 \(\Delta \mathrm{ABC}\) has a right angle at \(\mathrm{C}\). Calculate \(\mathrm{AC}\) given \(\mathrm{BC}=10 \mathrm{~cm}\) and \(A=40^{\circ}\).
An aeroplane flies 150 miles on a bearing of \(105^{\circ}\) and then 107 miles on a bearing of \(217^{\circ}\). Find the bearing that the aeroplane must take to fly directly back to the starting position.
For questions \(1-10\) solve \(\triangle \mathrm{ABC}\) given \(\mathrm{AC}=29 \mathrm{~cm}, \mathrm{BC}=19 \mathrm{~cm}, B=49^{\circ}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.