Chapter 11: Problem 1
The impedance of a component is \(Z=12-12 \mathrm{j}\). State (a) the resistance, (b) the reactance, (c) the phase of the voltage relative to the current.
Chapter 11: Problem 1
The impedance of a component is \(Z=12-12 \mathrm{j}\). State (a) the resistance, (b) the reactance, (c) the phase of the voltage relative to the current.
All the tools & learning materials you need for study success - in one app.
Get started for freeUse De Moivre's theorem to show that if \(z=\cos \theta+\mathrm{j} \sin \theta\) then (a) \(z^{n}=\cos n \theta+j \sin n \theta\) (b) \(z^{-n}=\cos n \theta-\mathrm{j} \sin n \theta\) Deduce that $$ z^{n}+\frac{1}{z^{n}}=2 \cos n \theta $$ and $$ z^{n}-\frac{1}{z^{n}}=2 \mathrm{j} \sin n \theta $$
If \(z=4 \angle \frac{\pi}{6}\) find \(z^{6}\) in polar form.
Show that \(3\left(\frac{\mathrm{e}^{j \omega}-\mathrm{e}^{-j \omega}}{j \omega}\right)=\frac{6 \sin \omega}{\omega}\)
Simplify the following complex numbers and diagram: show them on an Argand diagram: (a) \(3+3 \mathrm{j}\) (b) \(2=4\) (e) \(-\mathrm{i}\) (f) \(-5=1 \mathrm{j}\) (c) \(-0.5\) (d) \(6 \mathrm{j}\) (a) \(j^{2}\) (b) \(-\mathrm{j}^{2}\) (c) \((-\mathrm{j})^{2}\) (d) \(j^{3}\left(\right.\) e) \(j^{4}\)
Simplify (a) \(-j^{2},(b)(-j)^{2},(c)(-j)^{3}\), (d) \(-j^{3}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.