Chapter 11: Problem 1
Write down an expression for (a) \(\sqrt{4}\), (b) \(\sqrt{-4}\), (c) \(\sqrt{81}\), (d) \(\sqrt{-81}\)
Chapter 11: Problem 1
Write down an expression for (a) \(\sqrt{4}\), (b) \(\sqrt{-4}\), (c) \(\sqrt{81}\), (d) \(\sqrt{-81}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeSolve each of the following equations leaving (a) \(z^{3}=-1\) (b) \(z^{3}=1\) (c) \(z^{3}-6 \mathrm{j}=0\) your answers in polar form: (a) \(z^{2}=1+\mathrm{j}\) (b) \(z^{2}=1-\mathrm{j}\) (c) \(z^{3}=-2+3 \mathrm{j}\)
Simplify the following complex numbers and diagram: show them on an Argand diagram: (a) \(3+3 \mathrm{j}\) (b) \(2=4\) (e) \(-\mathrm{i}\) (f) \(-5=1 \mathrm{j}\) (c) \(-0.5\) (d) \(6 \mathrm{j}\) (a) \(j^{2}\) (b) \(-\mathrm{j}^{2}\) (c) \((-\mathrm{j})^{2}\) (d) \(j^{3}\left(\right.\) e) \(j^{4}\)
he impedance of an \(L C R\) circuit is $$ Z=R+\mathrm{j}\left(\omega L-\frac{1}{\omega C}\right) $$ (a) Find \(|Z|\). (b) From the result of part (a) deduce that the impedance has minimum magnitude when $$ \omega=\sqrt{\frac{1}{(L C)}} $$ (c) Deduce that this minimum value is \(R\).
Solve the quadratic equation \(5 x^{2}-11 x+13=0\)
\(2 \quad\) Express \(z=2+2 \mathrm{j}\) in polar form and hence find \(z^{8}\), leaving your answer in polar form. Deduce that \((2+2 \mathrm{j})^{8}=4096\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.