Chapter 11: Problem 2
Solve each of the following equations leaving (a) \(z^{3}=-1\) (b) \(z^{3}=1\) (c) \(z^{3}-6 \mathrm{j}=0\) your answers in polar form: (a) \(z^{2}=1+\mathrm{j}\) (b) \(z^{2}=1-\mathrm{j}\) (c) \(z^{3}=-2+3 \mathrm{j}\)
Chapter 11: Problem 2
Solve each of the following equations leaving (a) \(z^{3}=-1\) (b) \(z^{3}=1\) (c) \(z^{3}-6 \mathrm{j}=0\) your answers in polar form: (a) \(z^{2}=1+\mathrm{j}\) (b) \(z^{2}=1-\mathrm{j}\) (c) \(z^{3}=-2+3 \mathrm{j}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(z=4 \angle \frac{\pi}{6}\) find \(z^{6}\) in polar form.
Simplify the following complex numbers and diagram: show them on an Argand diagram: (a) \(3+3 \mathrm{j}\) (b) \(2=4\) (e) \(-\mathrm{i}\) (f) \(-5=1 \mathrm{j}\) (c) \(-0.5\) (d) \(6 \mathrm{j}\) (a) \(j^{2}\) (b) \(-\mathrm{j}^{2}\) (c) \((-\mathrm{j})^{2}\) (d) \(j^{3}\left(\right.\) e) \(j^{4}\)
Use De Moivre's theorem to show that if \(z=\cos \theta+\mathrm{j} \sin \theta\) then (a) \(z^{n}=\cos n \theta+j \sin n \theta\) (b) \(z^{-n}=\cos n \theta-\mathrm{j} \sin n \theta\) Deduce that $$ z^{n}+\frac{1}{z^{n}}=2 \cos n \theta $$ and $$ z^{n}-\frac{1}{z^{n}}=2 \mathrm{j} \sin n \theta $$
Express each of the following in terms of
Simplify (a) \(-j^{2},(b)(-j)^{2},(c)(-j)^{3}\), (d) \(-j^{3}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.