Chapter 11: Problem 2
With the help of a calculator find (a) \(\sqrt{7}\), (b) \(\sqrt{-7}\), (c) \(\sqrt{5.32}\), (d) \(\sqrt{-5.32}\)
Chapter 11: Problem 2
With the help of a calculator find (a) \(\sqrt{7}\), (b) \(\sqrt{-7}\), (c) \(\sqrt{5.32}\), (d) \(\sqrt{-5.32}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeWrite down an expression for (a) \(\sqrt{4}\), (b) \(\sqrt{-4}\), (c) \(\sqrt{81}\), (d) \(\sqrt{-81}\)
he impedance of an \(L C R\) circuit is $$ Z=R+\mathrm{j}\left(\omega L-\frac{1}{\omega C}\right) $$ (a) Find \(|Z|\). (b) From the result of part (a) deduce that the impedance has minimum magnitude when $$ \omega=\sqrt{\frac{1}{(L C)}} $$ (c) Deduce that this minimum value is \(R\).
Simplify the following complex numbers and diagram: show them on an Argand diagram: (a) \(3+3 \mathrm{j}\) (b) \(2=4\) (e) \(-\mathrm{i}\) (f) \(-5=1 \mathrm{j}\) (c) \(-0.5\) (d) \(6 \mathrm{j}\) (a) \(j^{2}\) (b) \(-\mathrm{j}^{2}\) (c) \((-\mathrm{j})^{2}\) (d) \(j^{3}\left(\right.\) e) \(j^{4}\)
Solve the equation \(-z^{2}+3 z-4=0\)
Use De Moivre's theorem to show that if \(z=\cos \theta+\mathrm{j} \sin \theta\) then (a) \(z^{n}=\cos n \theta+j \sin n \theta\) (b) \(z^{-n}=\cos n \theta-\mathrm{j} \sin n \theta\) Deduce that $$ z^{n}+\frac{1}{z^{n}}=2 \cos n \theta $$ and $$ z^{n}-\frac{1}{z^{n}}=2 \mathrm{j} \sin n \theta $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.