Chapter 11: Problem 4
Show that \(3\left(\frac{\mathrm{e}^{j \omega}-\mathrm{e}^{-j \omega}}{j \omega}\right)=\frac{6 \sin \omega}{\omega}\)
Chapter 11: Problem 4
Show that \(3\left(\frac{\mathrm{e}^{j \omega}-\mathrm{e}^{-j \omega}}{j \omega}\right)=\frac{6 \sin \omega}{\omega}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeUse De Moivre's theorem to show that if \(z=\cos \theta+\mathrm{j} \sin \theta\) then (a) \(z^{n}=\cos n \theta+j \sin n \theta\) (b) \(z^{-n}=\cos n \theta-\mathrm{j} \sin n \theta\) Deduce that $$ z^{n}+\frac{1}{z^{n}}=2 \cos n \theta $$ and $$ z^{n}-\frac{1}{z^{n}}=2 \mathrm{j} \sin n \theta $$
Solve each of the following equations leaving (a) \(z^{3}=-1\) (b) \(z^{3}=1\) (c) \(z^{3}-6 \mathrm{j}=0\) your answers in polar form: (a) \(z^{2}=1+\mathrm{j}\) (b) \(z^{2}=1-\mathrm{j}\) (c) \(z^{3}=-2+3 \mathrm{j}\)
Express \(\cos \omega t\) in terms of exponential functions.
Express each of the following in terms of
Consider the complex number \(z=\cos \theta+\mathrm{j} \sin \theta\) (a) Write down the exponential form of this number. (b) By raising the exponential form to the power \(n\), and using one of the laws of indices, deduce De Moivre's theorem.
What do you think about this solution?
We value your feedback to improve our textbook solutions.