Chapter 12: Problem 2
Given $$ A=\left(\begin{array}{ll} 6 & 1 \\ 3 & 7 \end{array}\right) $$ state (a) \(A-2 I_{2}\) (b) \(A-\lambda I_{2}\) where \(\lambda\) is a constant.
Chapter 12: Problem 2
Given $$ A=\left(\begin{array}{ll} 6 & 1 \\ 3 & 7 \end{array}\right) $$ state (a) \(A-2 I_{2}\) (b) \(A-\lambda I_{2}\) where \(\lambda\) is a constant.
All the tools & learning materials you need for study success - in one app.
Get started for freeRefer to matrices \(A, B\) and \(C\) where $$ A=\left(\begin{array}{cc} 3 & 1 \\ -1 & 2 \end{array}\right), \quad B=\left(\begin{array}{ccc} 1 & 4 & 0 \\ 2 & 7 & -1 \end{array}\right), \quad C=\left(\begin{array}{cc} -2 & 1 \\ 4 & -1 \\ 0 & 3 \end{array}\right) $$ Calculate the following products. \(A B\)
\(B^{\mathrm{T}} A C^{\mathrm{T}}\)
The matrix, \(H\), is defined by $$ H=\left(\begin{array}{cc} 2 & 1 \\ \alpha & 0 \\ -3 & \beta \end{array}\right) $$ (a) State the size of \(H\). (b) State \(h_{11}, h_{21}, h_{32}\)
State the transpose of \(C\) where $$ C=\left(\begin{array}{cc} 9 & 3 \\ 1 & -2 \\ \alpha & 4 \end{array}\right) $$
Refer to matrices \(P, Q\) and \(R\) where \(P\) is a \(3 \times 2\) matrix, \(Q\) is a \(3 \times 3\) matrix and \(R\) is a \(2 \times 3\) matrix. State the size of each of the following: (a) \(P^{\mathrm{T}^{7}}\) (b) \(Q^{\mathrm{T}}\) (c) \(R^{\mathrm{T}}\) (d) \(R^{T} P^{\mathrm{T}}\) (e) \(P^{\mathrm{T}} Q^{\mathrm{T}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.