Given $$ A=\left(\begin{array}{ll} 6 & 1 \\ 3 & 7 \end{array}\right) $$ state (a) \(A-2 I_{2}\) (b) \(A-\lambda I_{2}\) where \(\lambda\) is a constant.

Short Answer

Expert verified
(b) \(A-\lambda I_{2}\) for a given constant \(\lambda\)? Answer: (a) The matrix \(A-2 I_{2}\) is \(\begin{pmatrix} 4 & 1 \\ 3 & 5 \end{pmatrix}\). (b) The matrix \(A-\lambda I_{2}\) is \(\begin{pmatrix} 6-\lambda & 1 \\ 3 & 7-\lambda \end{pmatrix}\), where \(\lambda\) is a constant.

Step by step solution

01

Find the 2x2 identity matrix

The identity matrix is a square matrix that has 1s on its main diagonal (from the top left to the bottom right) and 0s elsewhere. The 2x2 identity matrix, denoted as \(I_2\), can be written as: $$ I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} $$
02

Calculate \(A-2I_2\)

Next, we will multiply the identity matrix by 2 and then subtract it from matrix A: $$ A-2I_2 = \begin{pmatrix} 6 & 1 \\ 3 & 7 \end{pmatrix} - 2\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} $$ Subtracting the corresponding elements in the matrices, we get: $$ A-2I_2 = \begin{pmatrix} 6-2(1) & 1-2(0) \\ 3-2(0) & 7-2(1) \end{pmatrix} = \begin{pmatrix} 4 & 1 \\ 3 & 5 \end{pmatrix} $$
03

Calculate \(A-\lambda I_2\)

Now, we will subtract \(\lambda I_2\) from matrix A, where \(\lambda\) is a constant: $$ A-\lambda I_2 = \begin{pmatrix} 6 & 1 \\ 3 & 7 \end{pmatrix} - \lambda\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} $$ Subtracting the corresponding elements in the matrices, we get: $$ A-\lambda I_2 = \begin{pmatrix} 6-\lambda(1) & 1-\lambda(0) \\ 3-\lambda(0) & 7-\lambda(1) \end{pmatrix} = \begin{pmatrix} 6-\lambda & 1 \\ 3 & 7-\lambda \end{pmatrix} $$ Now, we have found both matrices: (a) \(A-2 I_{2}=\begin{pmatrix} 4 & 1 \\ 3 & 5 \end{pmatrix}\) (b) \(A-\lambda I_{2}=\begin{pmatrix} 6-\lambda & 1 \\ 3 & 7-\lambda \end{pmatrix}\) where \(\lambda\) is a constant.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free