Chapter 12: Problem 3
Given $$ A=\left(\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & -1 \end{array}\right), \quad B=\left(\begin{array}{cc} -2 & 3 \\ 0 & 4 \\ 7 & -1 \end{array}\right) $$ calculate (a) \(A+B^{\mathrm{T}}\) (b) \(B-2 A^{\mathrm{T}}\)
Chapter 12: Problem 3
Given $$ A=\left(\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & -1 \end{array}\right), \quad B=\left(\begin{array}{cc} -2 & 3 \\ 0 & 4 \\ 7 & -1 \end{array}\right) $$ calculate (a) \(A+B^{\mathrm{T}}\) (b) \(B-2 A^{\mathrm{T}}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeState the number of elements in an \(n \times m\) matrix.
Given $$ A=\left(\begin{array}{ll} 6 & 1 \\ 3 & 7 \end{array}\right) $$ state (a) \(A-2 I_{2}\) (b) \(A-\lambda I_{2}\) where \(\lambda\) is a constant.
The matrix, \(H\), is defined by $$ H=\left(\begin{array}{cc} 2 & 1 \\ \alpha & 0 \\ -3 & \beta \end{array}\right) $$ (a) State the size of \(H\). (b) State \(h_{11}, h_{21}, h_{32}\)
State the transpose of \(C\) where $$ C=\left(\begin{array}{cc} 9 & 3 \\ 1 & -2 \\ \alpha & 4 \end{array}\right) $$
State the transpose of \(I_{3}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.