Given that $$ \frac{1}{21}\left(\begin{array}{cccc} 4 & 51 & 49 & -28 \\ -9 & -57 & -63 & 42 \\ -6 & -66 & -63 & 42 \\ 4 & 9 & 7 & -7 \end{array}\right) $$ is the inverse of $$ \left(\begin{array}{cccc} 3 & -1 & 4 & 6 \\ 1 & 2 & -1 & 2 \\ 2 & -2 & 3 & -2 \\ 5 & 0 & 4 & 1 \end{array}\right) $$ solve the following systems of equations: $$ \text { (a) } \begin{aligned} &3 w-x+4 y+6 z=19 \\ &w+2 x-y+2 z=11 \\ &2 w-2 x+3 y-2 z=-11 \\ &5 w+4 y+z=2 \end{aligned} $$ $$ \text { (b) } \begin{aligned} &2 \alpha-2 \beta+3 \gamma-2 \delta=11 \\ &\quad \alpha+2 \beta-\gamma+2 \delta=-2 \\ &\quad 5 \alpha+4 \gamma+\delta=15 \\ &3 \alpha-\beta+4 \gamma+6 \delta=1 \end{aligned} $$

Short Answer

Expert verified
Answer: The solutions for the given systems of linear equations are: System (a): w = 2, x = 0, y = -3, z = 4 System (b): α = 1, β = 2, γ = -1, δ = 0

Step by step solution

01

Write down the given inverse matrix and systems of equations

We are given the following inverse matrix and systems of equations to solve: Inverse matrix: $$ A^{-1} = \frac{1}{21}\left(\begin{array}{cccc} 4 & 51 & 49 & -28 \\\ -9 & -57 & -63 & 42 \\\ -6 & -66 & -63 & 42 \\\ 4 & 9 & 7 & -7 \end{array}\right) $$ System (a): $$ \begin{aligned} &3 w-x+4 y+6 z=19 \\\ &w+2 x-y+2 z=11 \\\ &2 w-2 x+3 y-2 z=-11 \\\ &5 w+4 y+z=2 \end{aligned} $$ System (b): $$ \begin{aligned} &2 \alpha-2 \beta+3 \gamma-2 \delta=11 \\\ &\quad \alpha+2 \beta-\gamma+2 \delta=-2 \\\ &\quad 5 \alpha+4 \gamma+\delta=15 \\\ &3 \alpha-\beta+4 \gamma+6 \delta=1 \end{aligned} $$
02

Multiply the inverse matrix by the right-hand side column vectors

For system (a), create a column vector with the constants on the right-hand side of the equations and multiply it by the inverse matrix A^{-1}: $$ A^{-1} \begin{bmatrix} 19 \\ 11 \\ -11 \\ 2 \end{bmatrix} = \begin{bmatrix} w \\ x \\ y \\ z \end{bmatrix} $$ For system (b), create a column vector with the constants on the right-hand side of the equations and multiply it by the inverse matrix A^{-1}: $$ A^{-1} \begin{bmatrix} 11 \\ -2 \\ 15 \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha \\ \beta \\ \gamma \\ \delta \end{bmatrix} $$
03

Compute the solutions for systems (a) and (b)

After multiplying the inverse matrix A^{-1} with the right-hand side column vectors, we obtain the solutions for systems (a) and (b): System (a) solution: $$ \begin{bmatrix} w \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ -3 \\ 4 \end{bmatrix} $$ System (b) solution: $$ \begin{bmatrix} \alpha \\ \beta \\ \gamma \\ \delta \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ -1 \\ 0 \end{bmatrix} $$ So, the solutions for systems (a) and (b) are: System (a): w = 2, x = 0, y = -3, z = 4 System (b): α = 1, β = 2, γ = -1, δ = 0

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free