Solve the following systems of three linear (c) \(i_{1}+i_{2}-i_{3}=1\) equations using Cramer's rule: (a) \(2 x-y-2 z=1\) \(x+y+3 z=6\) \(-2 x+3 z=-1\) (b) \(-2 x+3 z=-1\) \(\alpha+3 \beta+\gamma=2\) \(3 \alpha+2 \gamma=3\) \(v_{1}+\frac{1}{2} v_{2}-v_{3}=0.7\) \(-3 v_{1}+2 v_{3}=-3.1\) \(\theta_{1}+\theta_{2}+4 \theta_{3}=0\) \(2 \theta_{1}-\theta_{2}+\theta_{3}=5.4\) \(\theta_{1}+2 \theta_{2}-\theta_{3}=9.2\)

Short Answer

Expert verified
Given the following solution to a system of linear equations using Cramer's rule: \[x=2, y=3\frac{4}{11}, z=1\frac{2}{11}\] Explain the geometrical interpretation of Cramer's rule and how it is used in solving this system of linear equations.

Step by step solution

01

Identify the system of linear equations

We are given the following system of linear equations for system (a): $$2x - y - 2z = 1$$ $$x + y + 3z = 6$$ $$-2x + 3z = -1$$
02

Write down the coefficient matrix and its determinant

Create a coefficient matrix \(A\) from the given system of linear equations and compute its determinant: $$ A = \begin{bmatrix} 2 & -1 & -2 \\ 1 & 1 & 3 \\ -2 & 0 & 3 \end{bmatrix} $$ Now, find the determinant of matrix \(A\) (denoted as \(|A|\)): $$ |A| = 2\begin{vmatrix}1 & 3\\0 & 3\end{vmatrix} - (-1)\begin{vmatrix}1 & 3\\-2 & 3\end{vmatrix} -2\begin{vmatrix}1 & 1\\-2 & 0\end{vmatrix} $$ Now, calculate the determinants inside: $$ |A| = 2(1\cdot 3 - 0) -(-1)(1\cdot 3 - (-2)\cdot 3) - 2(1\cdot 0 - (-2)\cdot1) $$ $$ |A| = 6 + 9 - 4 = 11 $$
03

Find the determinants with variables

Replace the first column of matrix \(A\) with the constants from the equations, then find its determinant. Repeat this process for the second and third columns: $$ A_{x} = \begin{bmatrix} 1 & -1 & -2 \\ 6 & 1 & 3 \\ -1 & 0 & 3 \end{bmatrix} $$ $$ |A_{x}| = 1\begin{vmatrix}1 & 3\\0 & 3\end{vmatrix} - (-1)\begin{vmatrix}6 & 3\\-1 & 3\end{vmatrix} -2\begin{vmatrix}6 & 1\\-1 & 0\end{vmatrix} $$ $$ |A_{x}| = 3 + 21 - 2 = 22 $$ $$ A_{y} = \begin{bmatrix} 2 & 1 & -2 \\ 1 & 6 & 3 \\ -2 & -1 & 3 \end{bmatrix} $$ $$ |A_{y}| = 2\begin{vmatrix}6 & 3\\-1 & 3\end{vmatrix} - 1\begin{vmatrix}1 & 3\\-2 & 3\end{vmatrix} -2\begin{vmatrix}1 & 6\\-2 & -1\end{vmatrix} $$ $$ |A_{y}| = 30 - 1 + 8 = 37 $$ $$ A_{z} = \begin{bmatrix} 2 & -1 & 1 \\ 1 & 1 & 6 \\ -2 & 0 & -1 \end{bmatrix} $$ $$ |A_{z}| = 2\begin{vmatrix}1 & 6\\0 & -1\end{vmatrix} - (-1)\begin{vmatrix}1 & 6\\-2 & -1\end{vmatrix} - 1\begin{vmatrix}1 & 1\\-2 & 0\end{vmatrix} $$ $$ |A_{z}| = -2 + 13 + 2 = 13 $$
04

Compute the values of x, y, and z

Divide the determinants \(|A_x|\), \(|A_y|\), and \(|A_z|\) by \(|A|\) to find the values of \(x\), \(y\), and \(z\): $$ x = \frac{|A_x|}{|A|} = \frac{22}{11} = 2 $$ $$ y = \frac{|A_y|}{|A|} = \frac{37}{11} = 3\frac{4}{11} $$ $$ z = \frac{|A_z|}{|A|} = \frac{13}{11} = 1\frac{2}{11} $$ So, the solution for system (a) is: $$ x=2, y=3\frac{4}{11}, z=1\frac{2}{11} $$

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Use Jacobi's method to solve $$ \begin{aligned} 4 x-y &=-9.4 \\ 3 x+5 y &=7.9 \end{aligned} $$ Take \(x_{0}=-1, y_{0}=1.5\) and perform five iterations.

State which of the following matrices are in echelon form: (a) \(\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right)\) (b) \(\left(\begin{array}{llll}1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right)\) (c) \(\left(\begin{array}{ccccc}1 & 2 & 3 & 1 & 4 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 & 2\end{array}\right)\) (d) \(\left(\begin{array}{cccc}1 & 0 & 1 & -3 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 4 & 3\end{array}\right)\) (e) \(\left(\begin{array}{cccccc}0 & 0 & 1 & 2 & 0 & -4 \\ 0 & 0 & 0 & 0 & 1 & 3\end{array}\right)\)

Solve the following simultaneous equations using the inverse matrix method: $$ \text { (a) } \begin{aligned} &x+y-z=-1 \\ &2 x-y+2 z=8 \\ &2 x+3 y-z=-3 \end{aligned} $$ $$ \text { (b) } 2 I_{1}+I_{2}-I_{3}=10 $$ $$ \begin{aligned} &4 I_{1}+3 I_{2}+2 I_{3}=18 \\ &3 I_{1}-3 I_{2}+4 I_{3}=0.5 \end{aligned} $$ (c) \(r+s-t=0.5\) \(-2 r-s+2 t=-0.2\) \(r-4 s-2 t=-5\)

Determine which of the following systems have a non-trivial solution: (a) \(2 x+3 y=0\) \(4 x+6 y=0\) (b) \(9 x-y=0\) \(x+9 y=0\) (c) \(x-3 y=0\) \(-3 x+9 y=0\) (d) \(\frac{x}{2}-\frac{2 y}{3}=0\) \(3 x-4 y=0\) (e) \(-x+4 y=0\) \(2 x-6 y=0\)

Solve the following simultaneous equations using the inverse matrix method: (a) \(\begin{aligned} x+2 y &=11 \\ 2 x-y &=7 \end{aligned}\) (b) \(\begin{aligned} r_{1}+2 r_{2} &=13.5 \\ 3 r_{1}+r_{2} &=23 \end{aligned}\) (c) \(2 \alpha+3 \beta=5\) \(\alpha+\frac{\beta}{2}=0.5\)

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free