Chapter 16: Problem 1
Differentiate each of the following functions: (a) \(\left(x^{3}+2\right)^{6}\) (b) \(\sqrt{\sin x}\) (c) \(\left(\mathrm{e}^{x}+1\right)^{7}\) (d) \((\cos 2 x)^{5}\) (e) \(\ln (x+1)\)
Chapter 16: Problem 1
Differentiate each of the following functions: (a) \(\left(x^{3}+2\right)^{6}\) (b) \(\sqrt{\sin x}\) (c) \(\left(\mathrm{e}^{x}+1\right)^{7}\) (d) \((\cos 2 x)^{5}\) (e) \(\ln (x+1)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeUse parametric differentiation to find \(\frac{\mathrm{d} y}{\mathrm{~d} x}\) given (a) \(x=1+t, y=2+3 t+t^{2}\) (b) \(x=\sin t, y=\cos t\) (c) \(x=t^{2}, y=t^{3}\) (d) \(x=\mathrm{e}^{t}, y=\mathrm{e}^{t}+t\) (e) \(x=\sqrt{t}, y=1+\ln t\)
State the range of values of \(x\) for which each of the following functions is (i) concave up (ii) concave down: (a) \(y=\frac{x^{3}}{6}-\frac{5 x^{2}}{2}+3 x-9\) (b) \(y=3+x+\frac{x^{2}}{2}-\frac{x^{4}}{12}\) (c) \(y=\mathrm{e}^{x}-100 x-100\) (d) \(y=(x-1)^{4}\) (e) \(y=\frac{x^{2}}{2} \ln x-\frac{x^{2}}{4}\)
Find \(\frac{\mathrm{d} y}{\mathrm{~d} x}\) where \(y\) is given by (a) \(x^{3} \mathrm{e}^{2 x}\) (b) \(-3 \sin 2 x \cos 5 x\) (c) \(\left(x^{2}+1\right) \mathrm{e}^{-x}\) (d) \(\sin x \sin 2 x \sin 3 x\) (e) \(x \tan 3 x\).
Determine the location of all maximum and minimum points of the following functions: (a) \(y=x^{2}-4 x\) (b) \(y=x^{2}-5 x+4\) (c) \(y=10+3 x-x^{2}\) (d) \(y=\frac{x^{3}}{3}-\frac{x^{2}}{2}+1\) (e) \(y=x^{3}-27 x\)
Use logarithmic differentiation to differentiate $$ y=x^{x} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.