Chapter 16: Problem 1
Find \(\frac{\mathrm{d} y}{\mathrm{~d} x}\) where \(y\) is given by (a) \(x^{3} \mathrm{e}^{2 x}\) (b) \(-3 \sin 2 x \cos 5 x\) (c) \(\left(x^{2}+1\right) \mathrm{e}^{-x}\) (d) \(\sin x \sin 2 x \sin 3 x\) (e) \(x \tan 3 x\).
Chapter 16: Problem 1
Find \(\frac{\mathrm{d} y}{\mathrm{~d} x}\) where \(y\) is given by (a) \(x^{3} \mathrm{e}^{2 x}\) (b) \(-3 \sin 2 x \cos 5 x\) (c) \(\left(x^{2}+1\right) \mathrm{e}^{-x}\) (d) \(\sin x \sin 2 x \sin 3 x\) (e) \(x \tan 3 x\).
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the derivative of the following functions: (a) \(y=\mathrm{e}^{2 x} x^{3} \sin 3 x \cos 2 x\) (b) \(y=(x+\sin x)^{7}\) (c) \(H=\ln \left(t^{2}+3 t-9\right)\) (d) \(V(r)=\frac{1}{\ln r}\) (e) \(M(b)=\ln b+\ln (b+1)\)
Determine the location of all maximum and minimum points of the following functions: (a) \(y=x \mathrm{e}^{x}\) (b) \(y=\frac{1}{1+x^{2}}\) (c) \(y=\frac{x^{5}}{5}-\frac{x^{3}}{3}\) (d) \(y=\frac{x^{4}}{4}+x+1\) (e) \(y=(1-\ln x) x\)
State the range of values of \(x\) for which each of the following functions is (i) concave up (ii) concave down: (a) \(y=\frac{x^{3}}{6}-\frac{5 x^{2}}{2}+3 x-9\) (b) \(y=3+x+\frac{x^{2}}{2}-\frac{x^{4}}{12}\) (c) \(y=\mathrm{e}^{x}-100 x-100\) (d) \(y=(x-1)^{4}\) (e) \(y=\frac{x^{2}}{2} \ln x-\frac{x^{2}}{4}\)
Find the equation of the tangent to \(y=\frac{1}{x^{2}}\) where \(x=-1 .\)
Find \(\frac{\mathrm{d} y}{\mathrm{~d} x}\) when \(x=1\) where \(y\) is defined by (a) \(\frac{x \cos x}{\sin x}\) (b) \(\frac{x^{2}+1}{x^{x}}\) (c) \(\frac{\sin x \cos 2 x}{x^{2}}\) (d) \(\frac{1}{x \sin x}\) (e) \(\frac{4 \tan x}{\mathrm{e}^{x} \sin x}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.