Chapter 16: Problem 1
Find \(\frac{\mathrm{dy}}{\mathrm{d} x}\) where \(y\) is given by (a) \(x \cos x\) (b) \(x e^{x^{k}}\) (c) \(\sin x \cos 2 x\) (d) \(x^{3} \mathrm{e}^{2 x}\) (e) \(x^{4} \sin 2 x\)
Chapter 16: Problem 1
Find \(\frac{\mathrm{dy}}{\mathrm{d} x}\) where \(y\) is given by (a) \(x \cos x\) (b) \(x e^{x^{k}}\) (c) \(\sin x \cos 2 x\) (d) \(x^{3} \mathrm{e}^{2 x}\) (e) \(x^{4} \sin 2 x\)
All the tools & learning materials you need for study success - in one app.
Get started for freeFind \(\frac{\mathrm{d} y}{\mathrm{~d} x}\) given (a) \(x^{2}+x^{3}+y^{2}-y^{3}=1\) (b) \(2 x^{2}-y^{2}+3 x y-7 x-10 y=0\) (c) \(x y^{2}+\frac{y}{x}=\mathrm{e}^{x}\) (d) \(\ln (x y)-\sqrt{x}=\sqrt{y}\) (e) \(x \sin y+y^{2} \cos 2 x=y\)
Find the equation of the tangent to \(y=x \mathrm{e}^{x}\) where \(x=1\).
Find \(y^{\prime}\) where \(y\) is given by (a) \(\frac{x^{2}+1}{2 x+3}\) (b) \(\frac{\cos 2 t}{\sin 3 t}\) (c) \(\frac{r^{3}}{3 e^{2 r}}\) (d) \(\frac{v+\sin v}{1+\mathrm{e}^{v}}\) (e) \(\frac{\sqrt{x}}{x+1}\)
Differentiate the following functions of \(y\) with respect to \(x\) : (a) \((y+3)^{4}\) (b) \(\left(y^{2}+3\right)^{4}\)
Find \(y^{\prime}\) given \(\left(x^{2}-y^{3}\right)^{6}=\mathrm{e}^{x y}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.