Chapter 16: Problem 13
Find the equation of the tangent to \(y=x \mathrm{e}^{x}\) where \(x=1\).
Chapter 16: Problem 13
Find the equation of the tangent to \(y=x \mathrm{e}^{x}\) where \(x=1\).
All the tools & learning materials you need for study success - in one app.
Get started for freeState the range of values of \(x\) for which each of the following functions is (i) concave up (ii) concave down: (a) \(y=\frac{x^{3}}{6}-\frac{5 x^{2}}{2}+3 x-9\) (b) \(y=3+x+\frac{x^{2}}{2}-\frac{x^{4}}{12}\) (c) \(y=\mathrm{e}^{x}-100 x-100\) (d) \(y=(x-1)^{4}\) (e) \(y=\frac{x^{2}}{2} \ln x-\frac{x^{2}}{4}\)
Find the derivative of the following functions: (a) \(y=\mathrm{e}^{2 x} x^{3} \sin 3 x \cos 2 x\) (b) \(y=(x+\sin x)^{7}\) (c) \(H=\ln \left(t^{2}+3 t-9\right)\) (d) \(V(r)=\frac{1}{\ln r}\) (e) \(M(b)=\ln b+\ln (b+1)\)
Find \(y^{\prime}\) where \(y\) is given by (a) \(\frac{x^{2}+1}{2 x+3}\) (b) \(\frac{\cos 2 t}{\sin 3 t}\) (c) \(\frac{r^{3}}{3 e^{2 r}}\) (d) \(\frac{v+\sin v}{1+\mathrm{e}^{v}}\) (e) \(\frac{\sqrt{x}}{x+1}\)
Calculate \(y^{\prime}\) where \(y\) is given by (a) \(\left(t^{2}+1\right) \sin 4 t\) (b) \((3 t+7) \mathrm{e}^{-2 t}\) (c) \(\left(e^{x}+\mathrm{e}^{-2 \mathrm{n}}\right)\left(3 x^{2}-2 x\right)\) (d) \(\sqrt{x} e^{x}\) (e) \(\frac{t^{2}+1}{\mathrm{e}^{t}}\)
Find \(\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}\) given \(y=\mathrm{e}^{\left(x^{2}\right)}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.