Chapter 16: Problem 14
Find the equation of the tangent to \(y=\frac{1}{x^{2}}\) where \(x=-1 .\)
Chapter 16: Problem 14
Find the equation of the tangent to \(y=\frac{1}{x^{2}}\) where \(x=-1 .\)
All the tools & learning materials you need for study success - in one app.
Get started for freeFind \(\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}\) given \(y=\mathrm{e}^{\left(x^{2}\right)}\).
Find the equation of the normal to \(y=\ln x\) where \(x=2\).
Calculate the equation of the tangent to \(y=\sin x\) where \(x=\frac{\pi}{4}\).
Find the derivative of each of the following functions: (a) \(z(t)=\mathrm{e}^{3 t}(2 t-5)^{3}(3 t+1)^{4}\) (b) \(h(t)=3 \mathrm{e}^{-6 t} t^{7}(t+6)^{33}\) (c) \(M(p)=-p^{4} \sin ^{5} p\) (d) \(P(r)=6\left(1+r^{2}\right)^{6} \sqrt{3+r^{2}}\) (e) \(y(x)=\frac{(7-x)^{3}}{\left(3 x^{2}+1\right)^{2}}\)
Determine the location of all maximum and minimum points of the following functions: (a) \(y=x \mathrm{e}^{x}\) (b) \(y=\frac{1}{1+x^{2}}\) (c) \(y=\frac{x^{5}}{5}-\frac{x^{3}}{3}\) (d) \(y=\frac{x^{4}}{4}+x+1\) (e) \(y=(1-\ln x) x\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.