Chapter 16: Problem 3
Differentiate the following functions of \(y\) with respect to \(x\) : (a) \((y+3)^{4}\) (b) \(\left(y^{2}+3\right)^{4}\)
Chapter 16: Problem 3
Differentiate the following functions of \(y\) with respect to \(x\) : (a) \((y+3)^{4}\) (b) \(\left(y^{2}+3\right)^{4}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeFind \(\frac{\mathrm{d} y}{\mathrm{~d} x}\) given (a) \(x(t)=t^{2}+3, y(t)=2 t^{2}+t+1\) (b) \(x(t)=t^{2}, y(t)=t^{3}+k, k\) constant (c) \(x(t)=\frac{1}{t}, y(t)=\sin t\) (d) \(x(t)=2 \mathrm{e}^{t}, y(t)=t \mathrm{e}^{t}\) (e) \(x(t)=\sqrt{t, y(t)}=\sqrt{2 t+1}\)
Differentiate each of the following functions: (a) \(\left(x^{3}+2\right)^{6}\) (b) \(\sqrt{\sin x}\) (c) \(\left(\mathrm{e}^{x}+1\right)^{7}\) (d) \((\cos 2 x)^{5}\) (e) \(\ln (x+1)\)
Find \(\frac{\mathrm{d} y}{\mathrm{~d} x}\) where \(y\) is given by (a) \(x^{3} \mathrm{e}^{2 x}\) (b) \(-3 \sin 2 x \cos 5 x\) (c) \(\left(x^{2}+1\right) \mathrm{e}^{-x}\) (d) \(\sin x \sin 2 x \sin 3 x\) (e) \(x \tan 3 x\).
Find \(y^{\prime}\) given \(\left(x^{2}-y^{3}\right)^{6}=\mathrm{e}^{x y}\).
Determine the location of all maximum and minimum points of the following functions: (a) \(y=x^{2}-4 x\) (b) \(y=x^{2}-5 x+4\) (c) \(y=10+3 x-x^{2}\) (d) \(y=\frac{x^{3}}{3}-\frac{x^{2}}{2}+1\) (e) \(y=x^{3}-27 x\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.