Chapter 16: Problem 4
Find the derivative of the following functions: (a) \(y=\mathrm{e}^{2 x} x^{3} \sin 3 x \cos 2 x\) (b) \(y=(x+\sin x)^{7}\) (c) \(H=\ln \left(t^{2}+3 t-9\right)\) (d) \(V(r)=\frac{1}{\ln r}\) (e) \(M(b)=\ln b+\ln (b+1)\)
Chapter 16: Problem 4
Find the derivative of the following functions: (a) \(y=\mathrm{e}^{2 x} x^{3} \sin 3 x \cos 2 x\) (b) \(y=(x+\sin x)^{7}\) (c) \(H=\ln \left(t^{2}+3 t-9\right)\) (d) \(V(r)=\frac{1}{\ln r}\) (e) \(M(b)=\ln b+\ln (b+1)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeFind \(\frac{\mathrm{dy}}{\mathrm{d} x}\) where \(y\) is given by (a) \(x \cos x\) (b) \(x e^{x^{k}}\) (c) \(\sin x \cos 2 x\) (d) \(x^{3} \mathrm{e}^{2 x}\) (e) \(x^{4} \sin 2 x\)
Find \(\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}\) given \(y=\mathrm{e}^{\left(x^{2}\right)}\).
Find the equation of the tangent to \(y=\frac{1}{x^{2}}\) where \(x=-1 .\)
Use parametric differentiation to find \(\frac{\mathrm{d} y}{\mathrm{~d} x}\) given (a) \(x=1+t, y=2+3 t+t^{2}\) (b) \(x=\sin t, y=\cos t\) (c) \(x=t^{2}, y=t^{3}\) (d) \(x=\mathrm{e}^{t}, y=\mathrm{e}^{t}+t\) (e) \(x=\sqrt{t}, y=1+\ln t\)
State the range of values of \(x\) for which each of the following functions is (i) concave up (ii) concave down: (a) \(y=\frac{x^{3}}{6}-\frac{5 x^{2}}{2}+3 x-9\) (b) \(y=3+x+\frac{x^{2}}{2}-\frac{x^{4}}{12}\) (c) \(y=\mathrm{e}^{x}-100 x-100\) (d) \(y=(x-1)^{4}\) (e) \(y=\frac{x^{2}}{2} \ln x-\frac{x^{2}}{4}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.