Chapter 16: Problem 8
Find \(\frac{\mathrm{d} y}{\mathrm{~d} x}\) given \(\ln (x+y)=k, k\) constant.
Chapter 16: Problem 8
Find \(\frac{\mathrm{d} y}{\mathrm{~d} x}\) given \(\ln (x+y)=k, k\) constant.
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the derivative of the following functions using logarithmic differentiation: (a) \(a(t)=\left(1+t^{2}\right)^{3}\left(1-t^{2}\right)^{4} \sin ^{3} t\) (b) \(b(r)=\mathrm{e}^{-r} \sin ^{5} 2 r \cos ^{4} 3 r\) (c) \(K(p)=6 p \sqrt{\sin p}(\cos 2 p)^{1 / 3}\) (d) \(N(y)=\frac{(1+\sqrt{y})^{4}(6+7 y)^{3}}{\sqrt{1+y}}\) (e) \(x(t)=\frac{6}{(2+t)^{3}(1-t)^{4} \cos ^{3} t}\)
Find \(\frac{\mathrm{d} y}{\mathrm{~d} x}\) given (a) \(x^{2}+x^{3}+y^{2}-y^{3}=1\) (b) \(2 x^{2}-y^{2}+3 x y-7 x-10 y=0\) (c) \(x y^{2}+\frac{y}{x}=\mathrm{e}^{x}\) (d) \(\ln (x y)-\sqrt{x}=\sqrt{y}\) (e) \(x \sin y+y^{2} \cos 2 x=y\)
Find the equation of the tangent to \(y=x \mathrm{e}^{x}\) where \(x=1\).
Find the equation of the normal to \(y=\ln x\) where \(x=2\).
Find \(\frac{\mathrm{dy}}{\mathrm{d} x}\) where \(y\) is given by (a) \(x \cos x\) (b) \(x e^{x^{k}}\) (c) \(\sin x \cos 2 x\) (d) \(x^{3} \mathrm{e}^{2 x}\) (e) \(x^{4} \sin 2 x\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.