Chapter 17: Problem 10
Find \(\int \frac{1}{2} \sin \frac{2 \pi t}{T} \mathrm{~d} t\).
Chapter 17: Problem 10
Find \(\int \frac{1}{2} \sin \frac{2 \pi t}{T} \mathrm{~d} t\).
All the tools & learning materials you need for study success - in one app.
Get started for freeFind \(\int 3 \cos n \pi x \mathrm{~d} x\).
Find \(\int_{0}^{0.3} \frac{1}{x^{2}-3 x+2} \mathrm{~d} x\).
By making the substitution \(u^{2}=x\) find \(\int \sin \sqrt{x} \mathrm{~d} x\)
Evaluate the following definite integrals: (a) \(\int_{0}^{1} x \cos 2 x \mathrm{~d} x\) (b) \(\int_{0}^{\pi / 2} x \sin 2 x \mathrm{~d} x\) (c) \(\int_{-1}^{1} t \mathrm{e}^{2 t} \mathrm{~d} t\)
Find \(\int \frac{\sin ^{3} x}{\cos x}+\sin x \cos x \mathrm{~d} x\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.