Chapter 17: Problem 18
Find \(\int_{0}^{\infty} \mathrm{e}^{-x} \cos x \mathrm{~d} x\).
Chapter 17: Problem 18
Find \(\int_{0}^{\infty} \mathrm{e}^{-x} \cos x \mathrm{~d} x\).
All the tools & learning materials you need for study success - in one app.
Get started for freeUse the identity \(\sin (A+B)+\sin (A-B)=2 \sin A \cos B\) to find \(\int \sin 3 x \cos 2 x \mathrm{~d} x\).
Evaluate the following definite integrals: (a) \(\int_{0}^{1} x \cos 2 x \mathrm{~d} x\) (b) \(\int_{0}^{\pi / 2} x \sin 2 x \mathrm{~d} x\) (c) \(\int_{-1}^{1} t \mathrm{e}^{2 t} \mathrm{~d} t\)
Find \(\int \frac{\mathrm{d} x}{(1-x) \sqrt{x}}\).
Find \(\int t^{2} \mathrm{e}^{-s t} \mathrm{~d} t\) where \(s\) is a constant.
Find \(\int_{0}^{1} \frac{1+2 x}{1+x^{2}} \mathrm{~d} x\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.