Find \(\int \sin m t \sin n t \mathrm{~d} t\) where \(m\) and \(n\) are constants and \(m \neq n .\)

Short Answer

Expert verified
Question: Evaluate the integral of the product of two sine functions with different constants: \(\int \sin(mt) \sin(nt) dt\), where m ≠ n. Answer: \(\int \sin(mt) \sin(nt) dt = \frac{1}{2} \left[\frac{1}{m-n}\sin(mt-nt) - \frac{1}{m+n}\sin(mt+nt)\right] + C\)

Step by step solution

01

Apply product-to-sum trigonometric identity

We apply the product-to-sum trigonometric identity: \(\sin A \sin B = \frac{1}{2} (\cos(A-B) - \cos(A+B))\). Here, \(A = mt\) and \(B = nt\). So, \(\sin(mt) \sin(nt) = \frac{1}{2} (\cos(mt-nt) - \cos(mt+nt))\). Now our integral becomes: $$\int \sin(mt) \sin(nt) dt = \int \frac{1}{2} (\cos(mt-nt) - \cos(mt+nt)) dt$$
02

Separate the integrals

Now we split the integral into two separate integrals: $$\int \frac{1}{2} (\cos(mt-nt) - \cos(mt+nt)) dt = \frac{1}{2} \int \cos(mt-nt) dt - \frac{1}{2} \int \cos(mt+nt) dt$$
03

Evaluate the integrals

Now, let's evaluate each integral individually: 1) \(\int \cos(mt-nt) dt\): Substitute \(u = mt-nt\), then \(du = (m-n) dt\). Therefore, \(dt = \frac{1}{m-n} du\). $$\int \cos(mt-nt) dt = \int \cos(u) \frac{1}{m-n} du = \frac{1}{m-n} \int \cos(u) du = \frac{1}{m-n}[\sin(u) + C_1]$$ 2) \(\int \cos(mt+nt) dt\): Substitute \(v = mt+nt\), then \(dv = (m+n) dt\). Therefore, \(dt = \frac{1}{m+n} dv\). $$\int \cos(mt+nt) dt = \int \cos(v) \frac{1}{m+n} dv = \frac{1}{m+n} \int \cos(v) dv = \frac{1}{m+n}[\sin(v) + C_2]$$
04

Combine the results

Now that we have evaluated both integrals, we will combine them and substitute back the original variables: $$\frac{1}{2} \int \cos(mt-nt) dt - \frac{1}{2} \int \cos(mt+nt) dt = \frac{1}{2} \left[\frac{1}{m-n}\sin(mt-nt) - \frac{1}{m+n}\sin(mt+nt)\right] + C$$ So, the final answer is: $$\int \sin(mt) \sin(nt) dt = \frac{1}{2} \left[\frac{1}{m-n}\sin(mt-nt) - \frac{1}{m+n}\sin(mt+nt)\right] + C$$

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free