Chapter 17: Problem 8
Evaluate the following definite integrals: (a) \(\int_{0}^{1} x \cos 2 x \mathrm{~d} x\) (b) \(\int_{0}^{\pi / 2} x \sin 2 x \mathrm{~d} x\) (c) \(\int_{-1}^{1} t \mathrm{e}^{2 t} \mathrm{~d} t\)
Chapter 17: Problem 8
Evaluate the following definite integrals: (a) \(\int_{0}^{1} x \cos 2 x \mathrm{~d} x\) (b) \(\int_{0}^{\pi / 2} x \sin 2 x \mathrm{~d} x\) (c) \(\int_{-1}^{1} t \mathrm{e}^{2 t} \mathrm{~d} t\)
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the area bounded by \(y=\mathrm{e}^{x}\), the \(y\) axis, the \(x\) axis and the line \(x=2\).
Find \(\int_{0}^{\pi / 2} \cos ^{2} t \mathrm{~d} t\).
Use Simpson's rule with the number of strips specified to approximate the following definite integrals: (a) \(\int_{0}^{0.8} \tan ^{2} x \mathrm{~d} x, 8\) strips (b) \(\int_{1}^{2} \sqrt{1+x^{3}} \mathrm{~d} x, 10\) strips
If \(I_{n}=\int x^{n} \mathrm{e}^{2 x} \mathrm{~d} x\) show that \(I_{n}=\frac{x^{n} \mathrm{e}^{2 x}}{2}-\frac{n}{2} I_{n-1}\).
Find \(\int 3 \tan 2 x+2 \sin 3 x \mathrm{~d} x\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.