Chapter 20: Problem 6
Integrate twice the differential equation $$ \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\frac{w}{2}\left(l x-x^{2}\right) $$ where \(w\) and \(l\) are constants, to find a general solution for \(y\).
Chapter 20: Problem 6
Integrate twice the differential equation $$ \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\frac{w}{2}\left(l x-x^{2}\right) $$ where \(w\) and \(l\) are constants, to find a general solution for \(y\).
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the general solution of the following equations: (a) \(\frac{\mathrm{d} y}{\mathrm{~d} x}=k x\) (b) \(\frac{\mathrm{d} y}{\mathrm{~d} x}=-k y\) (c) \(\frac{\mathrm{d} y}{\mathrm{~d} x}=y^{2}\) (d) \(y \frac{d y}{d x}=\sin x\) (e) \(y \frac{\mathrm{d} y}{\mathrm{~d} x}=x+2\) (f) \(x^{2} \frac{\mathrm{d} y}{\mathrm{~d} x}=2 y^{2}+y x\) (g) \(\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{t^{4}}{x^{5}}\)
Find a particular integral for the equation $$ \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+\frac{\mathrm{d} y}{\mathrm{~d} x}+y=1+x $$
Obtain the general solutions, that is the complementary functions, of the following homogeneous equations: (a) \(\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-2 \frac{\mathrm{d} y}{\mathrm{~d} x}+y=0\) (b) \(\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}+\frac{\mathrm{d} y}{\mathrm{~d} t}+5 y=0\) (c) \(\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+\frac{\mathrm{d} y}{\mathrm{~d} x}-2 y=0\) (d) \(\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+9 y=0\) (e) \(\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-2 \frac{\mathrm{d} y}{\mathrm{~d} x}=0\) (f) \(\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}-16 x=0\)
Show that \(x(t)=7 \cos 3 t-2 \sin 2 t\) is a solution of $$ \frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+2 x=-49 \cos 3 t+4 \sin 2 t $$
Using software, obtain a symbolic solution of \(L \frac{\mathrm{d} i}{\mathrm{~d} t}+R i=10\left(1-\mathrm{e}^{-0.1 t}\right)\) when \(i(0)=i_{0}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.