Chapter 21: Problem 11
Calculate \(\frac{\partial z}{\partial x}\) when (a) \(z=\frac{y}{x^{2}}-\frac{x}{y^{2}}\), (b) \(z=\mathrm{e}^{x^{2}-4 x y}\)
Chapter 21: Problem 11
Calculate \(\frac{\partial z}{\partial x}\) when (a) \(z=\frac{y}{x^{2}}-\frac{x}{y^{2}}\), (b) \(z=\mathrm{e}^{x^{2}-4 x y}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(w=3 x y^{2}+2 y z^{2}\) find all first partial derivatives of \(w\) at the point with coordinates \((1,2,3)\)
$$ \text { If } z=3 x^{2}+7 x y-y^{2} \text { find } \frac{\partial^{2} z}{\partial y \partial x} \text { and } \frac{\partial^{2} z}{\partial x \partial y} \text {. } $$
Given \(f(x, y)=\sin 4 x \cos 3 y\) find \(\frac{\partial^{2} f}{\partial x^{2}}, \frac{\partial^{2} f}{\partial y^{2}}\) and \(\frac{\partial^{2} f}{\partial x \partial y}\)
Find all the second partial derivatives in each of the following cases: (a) \(z=8 \mathrm{e}^{x y}\) (b) \(z=-3 \mathrm{e}^{x} \sin y\) (c) \(z=4 \mathrm{e}^{y} \cos x\)
If \(y=x \sin t\) find \(\frac{\partial y}{\partial x}\) and \(\frac{\partial y}{\partial t}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.