Chapter 21: Problem 2
In each case, given \(z=f(x, y)\) find \(z_{x}\) and \(z_{y}\). (a) \(z=x y\) (b) \(z=3 x y\) (c) \(z=-9 y x\) (d) \(z=x^{2} y\) (e) \(z=9 x^{2} y\) (f) \(z=8 x y^{2}\)
Chapter 21: Problem 2
In each case, given \(z=f(x, y)\) find \(z_{x}\) and \(z_{y}\). (a) \(z=x y\) (b) \(z=3 x y\) (c) \(z=-9 y x\) (d) \(z=x^{2} y\) (e) \(z=9 x^{2} y\) (f) \(z=8 x y^{2}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine the stationary points of \(f(x, y)=\) \(2 x^{2}+3 y^{2}+5 x+12 y+19\)
Find \(\frac{\partial z}{\partial x}\) and \(\frac{\partial z}{\partial y}\) when (a) \(z=\mathrm{e}^{2 x}\) (b) \(z=\mathrm{e}^{5 y}\) (c) \(z=\mathrm{e}^{\mathrm{ry}}\) (d) \(z=4 \mathrm{e}^{2 y}\)
Find all the second partial derivatives in each of the following cases: (a) \(z=x \sin y(\) b) \(z=y \cos x\) (c) \(z=y \mathrm{e}^{2 x}\left(\right.\) d) \(z=y \mathrm{e}^{-x}\)
If \(y=x \cos t\) find \(\frac{\partial y}{\partial x}\) and \(\frac{\partial y}{\partial t}\).
If \(y=x \sin t\) find \(\frac{\partial y}{\partial x}\) and \(\frac{\partial y}{\partial t}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.