Chapter 21: Problem 3
If \(z=9 x+y^{2}\) evaluate \(\frac{\partial z}{\partial x}\) and \(\frac{\partial z}{\partial y}\) at the point \((4,-2) .\)
Chapter 21: Problem 3
If \(z=9 x+y^{2}\) evaluate \(\frac{\partial z}{\partial x}\) and \(\frac{\partial z}{\partial y}\) at the point \((4,-2) .\)
All the tools & learning materials you need for study success - in one app.
Get started for freeLocate the position of any stationary points of the following functions: $$ f(x, y)=\frac{x^{3}}{3}+3 x^{2}+x y+\frac{y^{2}}{2}+6 y $$
Find all the second partial derivatives in each of the following cases: \(\begin{aligned}&\text { (a) } z=\ln x(\mathrm{~b}) z=\ln y & (\mathrm{c}) z=\ln x y\end{aligned}\) (d) \(z=x \ln y\) (e) \(z=y \ln x\)
If \(z=f(x, y)=-11 x+y\) find (a) \(f(2,3)\) (b) \(f(11,1)\).
Given \(f(x, y)=\sin 4 x \cos 3 y\) find \(\frac{\partial^{2} f}{\partial x^{2}}, \frac{\partial^{2} f}{\partial y^{2}}\) and \(\frac{\partial^{2} f}{\partial x \partial y}\)
$$ \text { If } z=14 x-13 y \text { state } \frac{\partial z}{\partial x} \text { and } \frac{\partial z}{\partial y} \text {. } $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.