Chapter 21: Problem 3
$$ \text { If } z=3 x^{2}+7 x y-y^{2} \text { find } \frac{\partial^{2} z}{\partial y \partial x} \text { and } \frac{\partial^{2} z}{\partial x \partial y} \text {. } $$
Chapter 21: Problem 3
$$ \text { If } z=3 x^{2}+7 x y-y^{2} \text { find } \frac{\partial^{2} z}{\partial y \partial x} \text { and } \frac{\partial^{2} z}{\partial x \partial y} \text {. } $$
All the tools & learning materials you need for study success - in one app.
Get started for free$$ \text { If } z=14 x-13 y \text { state } \frac{\partial z}{\partial x} \text { and } \frac{\partial z}{\partial y} \text {. } $$
If \(z=f(x, y)=\sin (x+y)\) find \(f\left(20^{\circ}, 30^{\circ}\right)\) where the inputs are angles measured in degrees.
If \(f(x, t)=\mathrm{e}^{2 x}\) find \(f(0.5,3)\).
If \(z=14-4 x y\) evaluate \(\frac{\partial z}{\partial x}\) and \(\frac{\partial z}{\partial y}\) at the point \((1,2)\).
If \(z=f(x, y)=3 \mathrm{e}^{x}-2 \mathrm{e}^{y}+x^{2} y^{3}\) find \(z(1,1)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.