Chapter 21: Problem 5
Find all the second partial derivatives in each of the following cases: \(\begin{aligned}&\text { (a) } z=\ln x(\mathrm{~b}) z=\ln y & (\mathrm{c}) z=\ln x y\end{aligned}\) (d) \(z=x \ln y\) (e) \(z=y \ln x\)
Chapter 21: Problem 5
Find all the second partial derivatives in each of the following cases: \(\begin{aligned}&\text { (a) } z=\ln x(\mathrm{~b}) z=\ln y & (\mathrm{c}) z=\ln x y\end{aligned}\) (d) \(z=x \ln y\) (e) \(z=y \ln x\)
All the tools & learning materials you need for study success - in one app.
Get started for freeLocate the position of any stationary points of the following functions: $$ f(x, y)=\frac{x^{3}}{3}+3 x^{2}+x y+\frac{y^{2}}{2}+6 y $$
$$ \text { If } w=5 y-2 x \text { state } \frac{\partial^{2} w}{\partial x^{2}} \text { and } \frac{\partial^{2} w}{\partial y^{2}} \text {. } $$
Given \(f(x, y)=\sin 4 x \cos 3 y\) find \(\frac{\partial^{2} f}{\partial x^{2}}, \frac{\partial^{2} f}{\partial y^{2}}\) and \(\frac{\partial^{2} f}{\partial x \partial y}\)
Locate the position of any stationary points of the following functions: $$ f(x, y)=-x-y^{3} $$
Find \(\frac{\partial z}{\partial x}\) and \(\frac{\partial z}{\partial y}\) when (a) \(z=\mathrm{e}^{2 x}\) (b) \(z=\mathrm{e}^{5 y}\) (c) \(z=\mathrm{e}^{\mathrm{ry}}\) (d) \(z=4 \mathrm{e}^{2 y}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.