Chapter 21: Problem 5
If \(z=f(x, y)=\sin (x+y)\) find \(f\left(20^{\circ}, 30^{\circ}\right)\) where the inputs are angles measured in degrees.
Chapter 21: Problem 5
If \(z=f(x, y)=\sin (x+y)\) find \(f\left(20^{\circ}, 30^{\circ}\right)\) where the inputs are angles measured in degrees.
All the tools & learning materials you need for study success - in one app.
Get started for freeIn each case, given \(z=f(x, y)\) find \(z_{x}\) and \(z_{y}\). (a) \(z=x y\) (b) \(z=3 x y\) (c) \(z=-9 y x\) (d) \(z=x^{2} y\) (e) \(z=9 x^{2} y\) (f) \(z=8 x y^{2}\)
Using the temperature distribution function \(T(x, y)=\frac{\sinh \pi y \sin \pi x}{\sinh \pi}\) in Example 1.6, evaluate the temperature at the centre of the plate.
$$ \text { If } w=5 y-2 x \text { state } \frac{\partial^{2} w}{\partial x^{2}} \text { and } \frac{\partial^{2} w}{\partial y^{2}} \text {. } $$
Calculate \(\frac{\partial z}{\partial y}\) when \(z=\frac{x^{2}-3 y^{2}}{x^{2}+y^{2}}\).
Calculate \(\frac{\partial z}{\partial x}\) when (a) \(z=\frac{y}{x^{2}}-\frac{x}{y^{2}}\), (b) \(z=\mathrm{e}^{x^{2}-4 x y}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.