Chapter 21: Problem 6
If \(f(x, t)=\mathrm{e}^{2 x}\) find \(f(0.5,3)\).
Chapter 21: Problem 6
If \(f(x, t)=\mathrm{e}^{2 x}\) find \(f(0.5,3)\).
All the tools & learning materials you need for study success - in one app.
Get started for freeIn each case, given \(z=f(x, y)\) find \(z_{x}\) and \(z_{y}\). (a) \(z=x y\) (b) \(z=3 x y\) (c) \(z=-9 y x\) (d) \(z=x^{2} y\) (e) \(z=9 x^{2} y\) (f) \(z=8 x y^{2}\)
If \(p=\frac{R T}{V}\) where \(R\) is a constant, find \(\frac{\partial p}{\partial V}\) and \(\frac{\partial p}{\partial T}\)
Find all the second partial derivatives in each of the following cases: (a) \(z=x \sin y(\) b) \(z=y \cos x\) (c) \(z=y \mathrm{e}^{2 x}\left(\right.\) d) \(z=y \mathrm{e}^{-x}\)
Find all the second partial derivatives in each of the following cases: (a) \(z=\frac{1}{x}\) (b) \(z=\frac{y}{x}\) (c) \(z=\frac{x}{y}\) (d) \(z=\frac{1}{x}+\frac{1}{y}\)
$$ \text { If } w=5 y-2 x \text { state } \frac{\partial^{2} w}{\partial x^{2}} \text { and } \frac{\partial^{2} w}{\partial y^{2}} \text {. } $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.