Chapter 21: Problem 7
If \(w=3 x y^{2}+2 y z^{2}\) find all first partial derivatives of \(w\) at the point with coordinates \((1,2,3)\)
Chapter 21: Problem 7
If \(w=3 x y^{2}+2 y z^{2}\) find all first partial derivatives of \(w\) at the point with coordinates \((1,2,3)\)
All the tools & learning materials you need for study success - in one app.
Get started for free$$ \text { If } V=D^{1 / 4} T^{-5 / 6} \text { find } \frac{\partial V}{\partial T} \text { and } \frac{\partial V}{\partial D} $$
Find \(\frac{\partial z}{\partial x}\) and \(\frac{\partial z}{\partial y}\) when (a) \(z=\mathrm{e}^{2 x}\) (b) \(z=\mathrm{e}^{5 y}\) (c) \(z=\mathrm{e}^{\mathrm{ry}}\) (d) \(z=4 \mathrm{e}^{2 y}\)
In each case, given \(z=f(x, y)\), find \(\frac{\partial z}{\partial x}\) and \(\frac{\partial z}{\partial y}\). (a) \(z=5 x+11 y\) (b) \(z=-7 y-14 x\) (c) \(z=8 x(\) d) \(z=-5 y\) (e) \(z=3 x+8 y-2\) (f) \(z=17-3 x+2 y\) (g) \(z=8\) (h) \(z=8-3 y\) (i) \(z=2 x^{2}-7 y\) (j) \(z=9-3 y^{3}+7 x\) (k) \(z=9-9(x-y) \quad\) (I) \(z=9(x+y+3)\)
Find \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial^{2} f}{\partial x^{2}}, \frac{\partial^{2} f}{\partial y^{2}}\) and \(\frac{\partial^{2} f}{\partial x \partial y}\) if \(f=(x-y)^{2}\).
Find all the second partial derivatives in each of the following cases: \(\begin{aligned}&\text { (a) } z=\ln x(\mathrm{~b}) z=\ln y & (\mathrm{c}) z=\ln x y\end{aligned}\) (d) \(z=x \ln y\) (e) \(z=y \ln x\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.