Chapter 21: Problem 7
Using the temperature distribution function \(T(x, y)=\frac{\sinh \pi y \sin \pi x}{\sinh \pi}\) in Example 1.6, evaluate the temperature at the centre of the plate.
Chapter 21: Problem 7
Using the temperature distribution function \(T(x, y)=\frac{\sinh \pi y \sin \pi x}{\sinh \pi}\) in Example 1.6, evaluate the temperature at the centre of the plate.
All the tools & learning materials you need for study success - in one app.
Get started for freeIf \(z=14-4 x y\) evaluate \(\frac{\partial z}{\partial x}\) and \(\frac{\partial z}{\partial y}\) at the point \((1,2)\).
$$ \text { If } z=14 x-13 y \text { state } \frac{\partial z}{\partial x} \text { and } \frac{\partial z}{\partial y} \text {. } $$
$$ \text { If } V=D^{1 / 4} T^{-5 / 6} \text { find } \frac{\partial V}{\partial T} \text { and } \frac{\partial V}{\partial D} $$
If \(z=4 \mathrm{e}^{5 x y}\) find \(\frac{\partial z}{\partial x}\) and \(\frac{\partial z}{\partial y}\).
If \(z=9 x+y^{2}\) evaluate \(\frac{\partial z}{\partial x}\) and \(\frac{\partial z}{\partial y}\) at the point \((4,-2) .\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.